1
|
Wang S, Zhou Y, Xiao W, Li Z, Liu X, Feng X. Asymmetric synthesis of complex tricyclo[3.2.2.0]nonenes from racemic norcaradienes: kinetic resolution via Diels-Alder reaction. Chem Sci 2023; 14:1844-1851. [PMID: 36819855 PMCID: PMC9930936 DOI: 10.1039/d2sc06490a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
Herein, the enantioselective synthesis of complex tricyclo[3.2.2.0]nonenes through the Diels-Alder reaction is reported. Utilizing racemic norcaradienes prepared from the visible-light-mediated dearomative cyclopropanation of m-xylene as dienes and enone derivatives as dienophiles, the overall process represents a kinetic asymmetric transformation in the presence of a chiral cobalt(ii) complex of chiral N,N'-dioxide. High diastereo- and enantioselectivity could be obtained in most cycloaddition processes and part racemization of norcaradiene is observed. The topographic steric maps of the catalysts were collected to rationalize the relationship between reactivity and enantioselectivity with the catalysts.
Collapse
Affiliation(s)
- Siyuan Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Wanlong Xiao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Zegong Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
2
|
Alavi S, Lin JB, Grover HK. Copper-Catalyzed Annulation of Indolyl α-Diazocarbonyl Compounds Leads to Structurally Rearranged Carbazoles. Org Lett 2021; 23:5559-5564. [PMID: 34197126 DOI: 10.1021/acs.orglett.1c01965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Indolyl α-diazocarbonyl compounds have proven to be effective starting materials for the construction of various 2,3-ring fused indole frameworks. Activation of the diazo functional group under metal catalysis generates a spiro-cyclic indolenine-type intermediate which rearranges to provide two distinct carbazoles upon oxidation. The current study investigates the effects of the catalyst as well as the substituents on the migratory group involved in controlling the selectivity of the rearrangement.
Collapse
Affiliation(s)
- Sima Alavi
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X7, Canada
| | - Jian-Bin Lin
- C-CART, CREAIT Network, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X7, Canada
| | - Huck K Grover
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X7, Canada
| |
Collapse
|
3
|
Perspective: Reflections on a career in synthetic organic chemistry, 1970 to 2020. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Ueda J, Harada S, Kanda A, Nakayama H, Nemoto T. Silver-Catalyzed, Chemo- and Enantioselective Intramolecular Dearomatization of Indoles to Access Sterically Congested Azaspiro Frameworks. J Org Chem 2020; 85:10934-10950. [PMID: 32692554 DOI: 10.1021/acs.joc.0c01580] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An asymmetric dearomatization of indoles bearing α-diazoacetamide functionalities was developed for synthesizing high-value spiro scaffolds. A silver phosphate chemoselectively catalyzed the sterically challenging dearomatization, whereas more typically used metal catalysts for carbene transfer reactions, such as a rhodium complex, were not effective and instead resulted in a Büchner ring expansion or cyclopropanation. Mechanistic studies indicated that the spirocyclization occurred through a silver-assisted asynchronous concerted process and not via a silver-carbene intermediate. Analyses based on natural bond orbital population and a distortion/interaction model indicated that the degree of C-Ag mutual interaction is crucial for achieving a high level of enantiocontrol. In addition, an oxidative disconnection of a C(sp3)-C(sp2) bond in the product provided unconventional access to the corresponding chiral spirooxindole.
Collapse
Affiliation(s)
- Jun Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Shingo Harada
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ayaka Kanda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Hiroki Nakayama
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Tetsuhiro Nemoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan.,Molecular Chirality Research Center, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
5
|
Smith KL, Padgett CL, Mackay WD, Johnson JS. Catalytic, Asymmetric Dearomative Synthesis of Complex Cyclohexanes via a Highly Regio- and Stereoselective Arene Cyclopropanation Using α-Cyanodiazoacetates. J Am Chem Soc 2020; 142:6449-6455. [PMID: 32227868 DOI: 10.1021/jacs.9b13080] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Arene cyclopropanation offers a direct route to higher-order, non-aromatic carbocycles; however, the inherent issue of dictating site selectivity has cumbered the development of novel intermolecular reactions that directly engage the arene pool. This paper describes a highly regio- and stereoselective, Rh2[(S)-PTTL]4-catalyzed arene cyclopropanation using α-cyanodiazoacetates to afford stable norcaradienes bearing three stereogenic centers, one of which is an all-carbon quaternary center. The enantioenriched norcaradienes served as tunable templates for further transformation into stereochemically dense, fused and bicyclic carbocycles containing transmutable functionality.
Collapse
Affiliation(s)
- Kendrick L Smith
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Cody L Padgett
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - William D Mackay
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Jeffrey S Johnson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
6
|
Gallo RDC, Momo PB, Day DP, Burtoloso ACB. Catalytic Friedel-Crafts Alkylation of Electron Rich Aromatic Derivatives with α-Aryl Diazoacetates Mediated by Brønsted Acids. Org Lett 2020; 22:2339-2343. [PMID: 32133862 DOI: 10.1021/acs.orglett.0c00540] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The catalytic protonation of aryl diazoacetates by strong Brønsted acids, followed by a Friedel-Crafts alkylation reaction with electron rich aromatic compounds, is reported. The reaction provided in a direct fashion 24 geminal diarylacetates in yields of ≤92%.
Collapse
Affiliation(s)
- Rafael D C Gallo
- Instituto de Quı́mica de São Carlos, Universidade de São Paulo, CEP, São Carlos, SP 13560-970, Brazil
| | - Patrícia B Momo
- Instituto de Quı́mica de São Carlos, Universidade de São Paulo, CEP, São Carlos, SP 13560-970, Brazil
| | - David P Day
- Instituto de Quı́mica de São Carlos, Universidade de São Paulo, CEP, São Carlos, SP 13560-970, Brazil
| | - Antonio C B Burtoloso
- Instituto de Quı́mica de São Carlos, Universidade de São Paulo, CEP, São Carlos, SP 13560-970, Brazil
| |
Collapse
|
7
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2018. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|