1
|
Bag SS, Banerjee A, Sinha S, Jana S. Facets of click-mediated triazoles in decorating amino acids and peptides. Chem Commun (Camb) 2025; 61:639-657. [PMID: 39552572 DOI: 10.1039/d4cc03887h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Decorating biomolecular building blocks, such as amino acids, to afford desired and tuneable photophysical/biophysical properties would allow chemical biologists to use them for several biotechnological and biosensing applications. While many synthetic methodologies have been explored in this direction, advantages provided by click-derived triazole moieties are second to none. However, since their discovery, click-mediated triazoles have been majorly utilised as linkers for conjugating biomolecules, creating materials with novel properties, such as polymers or drug conjugates. Despite exploring their profound role as linkers, click-mediated triazoles as an integral part of biomolecular building blocks have not been addressed. 1,2,3-Triazole, a transamide mimic, exhibits high aromatic stacking propensity, high associability with biomolecules through H-bonding, and high stability against enzymatic hydrolysis. Furthermore, triazoles can be considered donors useable for installation/modulation of the photophysics of a fluorophore. Therefore, triazole with a chromophoric unit may rightly be utilised as an integral part of biomolecular building blocks to install microenvironment-sensitive solvofluorochromic properties suitable for biological sensing, studying inter-biomolecular interactions and introducing novel physicochemical properties in a biomolecule. This review mainly focuses on the facets of click-derived triazole in designing novel fluorescent amino acids and peptides with a particular emphasis on those wherein triazole acts as an integral part of amino acids, i.e. the side chain, generating a new class of fluorescent unnatural triazolyl amino acids. Thus, fluorescent triazolyl unnatural amino acids, peptidomimetics with such amino acids and aliphatic/aromatic triazolyl amino acids as scaffolds for peptidomimetics are the central part. However, to start with, a brief history, followed by a discussion on various other relevant facets of triazoles as linkers in various fields ranging from therapeutics, materials science, diagnostics, and bioconjugation to peptidomimetics, is cited. Additionally, the possible roles of CuAAC-mediated triazoles in shaping the future of bioorganic chemistry, medicinal chemistry, diagnostics, nucleoside chemistry and protein engineering are briefly discussed.
Collapse
Affiliation(s)
- Subhendu Sekhar Bag
- Chemical Biology/Genomics Laboratory, Department of Chemistry, Indian Institute of Technology Guwahati, 781039, India.
- Centre for the Environment, Indian Institute of Technology Guwahati, 781039, India
| | - Aniket Banerjee
- Centre for the Environment, Indian Institute of Technology Guwahati, 781039, India
| | - Sayantan Sinha
- Centre for the Environment, Indian Institute of Technology Guwahati, 781039, India
| | - Subhashis Jana
- Chemical Biology/Genomics Laboratory, Department of Chemistry, Indian Institute of Technology Guwahati, 781039, India.
| |
Collapse
|
2
|
Bag SS, Sinha S, Dutta S, Baishya HJ, Paul S. Targeting the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) with synthetic/designer unnatural nucleoside analogs: an in silico study. J Mol Model 2023; 29:366. [PMID: 37950101 DOI: 10.1007/s00894-023-05767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
CONTEXT Since the outbreak of COVID-19 in December 2019, it developed into a pandemic affecting all the countries and millions of people around the globe. Until now, there is no medicine available to contain the spread of the virus. As an aid to drug discovery, the molecular docking and molecular dynamic tools were applied extensively. In silico studies made it possible for rapid screening of potential molecules as possible inhibitors/drugs against the targeted proteins. As a continuation of our drug discovery research, we have carried out molecular docking studies of our 12 reported unnatural nucleosides and 14 designer Avigan analogs with SARS-CoV-2, RNA-dependent RNA polymerase (RdRp), which we want to report herein. The same calculation was also carried out, taking 11 known/under trail/commercial nucleoside drug molecules for a comparison of the binding interactions in the catalytic site of RdRp. The docking results and binding efficiencies of our reported nucleosides and designer nucleosidic were compared with the binding energy of commercially available drugs such as remdesevir and favipiravir. Furthermore, we evaluated the protein-drug binding efficiency and stability of the best docked molecules by molecular dynamic studies (MD). From our study, we have found that few of our proposed drugs show promising binding efficiency at the catalytic pocket of SARS-CoV-2 RdRp and can be a promising RdRp inhibitor drug candidate. Hence, this study will be of importance to make progress toward developing successful nucleoside-based drugs and conduct the antiviral test in the wet lab to understand their efficacy against COVID-19. METHOD All the docking studies were carried out with AutoDock 4.2, AutoDock Vina and Molegro Virtual Docker. Following the docking studies, the MD simulations were carried out following the standard protocol with the GROMACS ver. 2019.6. by applying the CHARMM36 all-atom biomolecular force field. The drug-protein interaction was studied using the Biovia Discovery Studio suite, Ligplot software, and Protein-Ligand Interaction Profiler (PLIP).
Collapse
Affiliation(s)
- Subhendu Sekhar Bag
- Chemical Biology/Genomics Laboratory, Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India, 781039.
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam, India, 781039.
| | - Sayantan Sinha
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam, India, 781039
| | - Soumya Dutta
- Chemical Biology/Genomics Laboratory, Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India, 781039
| | - Hirak Jyoti Baishya
- Chemical Biology/Genomics Laboratory, Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India, 781039
| | - Suravi Paul
- Chemical Biology/Genomics Laboratory, Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India, 781039
| |
Collapse
|
3
|
Sawyer JM, Passow KT, Harki DA. Synthesis and photophysical characterization of fluorescent indole nucleoside analogues. RSC Adv 2023; 13:16369-16376. [PMID: 37266506 PMCID: PMC10230516 DOI: 10.1039/d3ra03457g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023] Open
Abstract
Fluorescent nucleosides are useful chemical tools for biochemical research and are frequently incorporated into nucleic acids for a variety of applications. The most widely utilized fluorescent nucleoside is 2-aminopurine-2'-deoxyribonucleoside (2APN). However, 2APN is limited by a moderate Stokes shift, molar extinction coefficient, and quantum yield. We recently reported 4-cyanoindole-2'-deoxyribonucleoside (4CIN), which offers superior photophysical characteristics in comparison to 2APN. To further improve upon 4CIN, a focused library of additional analogues combining the structural features of 2APN and 4CIN were synthesized and their photophysical properties were quantified. Nucleosides 2-6 were found to possess diverse photophysical properties with some features superior to 4CIN. In addition, the structure-function relationship data gained from 1-6 can inform the design of next-generation fluorescent indole nucleosides.
Collapse
Affiliation(s)
- Jacob M Sawyer
- Department of Chemistry, University of Minnesota Minneapolis Minnesota 55455 USA
| | - Kellan T Passow
- Department of Medicinal Chemistry, University of Minnesota Minneapolis Minnesota 55455 USA
| | - Daniel A Harki
- Department of Chemistry, University of Minnesota Minneapolis Minnesota 55455 USA
- Department of Medicinal Chemistry, University of Minnesota Minneapolis Minnesota 55455 USA
| |
Collapse
|
4
|
Qiu K, Li J, Ma H, Zhou W, Cai Q. Recent Advances in the Construction of Nitrogen-Containing Heterocycles via Trapping Organocopper(I) Intermediates. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a22100419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
5
|
Bag SS, Gogoi H, Sinha S. Synthesis and studies on the photophysical/biophysical properties of triazolylfluorene-labeled 2′-deoxyuridines. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Mukherjee MM, Maity SK, Ghosh R. One-pot construction of carbohydrate scaffolds mediated by metal catalysts. RSC Adv 2020; 10:32450-32475. [PMID: 35516477 PMCID: PMC9056687 DOI: 10.1039/d0ra05355d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/04/2020] [Indexed: 11/21/2022] Open
Abstract
Owing to the environmental concern worldwide and also due to cost, time and labour issues, use of one-pot reactions [domino/cascade/tandem/multi-component (MC) or sequential] has gained much attention among the scientific and industrial communities for the generation of compound libraries having different scaffolds. Inclusion of sugars in such compounds is expected to increase the pharmacological efficacy because of the possibility of better interactions with the receptors of such unnatural glycoconjugates. In many of the one-pot transformations, the presence of a metal salt/complex can improve the reaction/change the course of reaction with remarkable increase in chemo-/regio-/stereo-selectivity. On the other hand because of the importance of natural polymeric glycoconjugates in life processes, the development and efficient synthesis of related oligosaccharides, particularly utilising one-pot MC-glycosylation techniques are necessary. The present review is an endeavour to discuss one-pot transformations involving carbohydrates catalysed by a metal salt/complex.
Collapse
Affiliation(s)
- Mana Mohan Mukherjee
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health Bethesda MD 20892 USA
| | | | - Rina Ghosh
- Department of Chemistry, Jadavpur University Kolkata 700032 India
| |
Collapse
|
7
|
Gurjar KK, Sharma RK. Synthetic and computational studies on CuI/ligand pair promoted activation of C(Aryl)-Cl bond in C-N coupling reactions. Heliyon 2020; 6:e03233. [PMID: 32055723 PMCID: PMC7005438 DOI: 10.1016/j.heliyon.2020.e03233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 11/26/2019] [Accepted: 01/13/2020] [Indexed: 11/23/2022] Open
Abstract
Cu/ligand-mediated coupling reactions have been widely investigated in the recent past. However, activation of cheaper aryl chlorides is still a great limitation of these reactions. During the course of present investigations efforts have been made to develop a normal and facile CuI/ligand pair protocol for arylation of phthalimide using aryl chlorides. The protocol has also been extended for arylation of amines. On the basis of experimental and theoretical results, a catalytic cycle has also been proposed and it has been established that these reactions follow oxidative addition-reductive elimination (OA-RE) pathway. These studies have indicated that tetracoordinated [Cu(L1)(L2)]+ complex is active catalytic species in these reactions.
Collapse
|
8
|
Liu J, Ingale SA, Seela F. Guanine and 8-Azaguanine in Anomeric DNA Hybrid Base Pairs: Stability, Fluorescence Sensing, and Efficient Mismatch Discrimination with α-d-Nucleosides. Bioconjug Chem 2018; 29:2265-2277. [PMID: 29771499 DOI: 10.1021/acs.bioconjchem.8b00261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The α-anomers of 8-aza-2'-deoxyguanosine (αGd*) and 2'-deoxyguanosine (αGd) were site-specifically incorporated in 12-mer duplexes opposite to the four canonical DNA constituents dA, dG, dT, and dC. Oligodeoxyribonucleotides containing αGd* display significant fluorescence at slightly elevated pH (8.0). Oligodeoxyribonucleotides incorporating β-anomeric 8-aza-2'-deoxyguanosine (Gd*) and canonical dG were studied for comparison. For αGd* synthesis, an efficient purification of anomeric 8-azaguanine nucleosides was developed on the basis of protected intermediates, and a new αGd* phosphoramidite was prepared. Differences were observed for sugar conformations ( N vs S) and p Ka values of anomeric nucleosides. Duplex stability and mismatch discrimination were studied employing UV-dependent melting and fluorescence quenching. A gradual fluorescence change takes place in duplex DNA when the α-nucleoside αGd* was positioned opposite to the four canonical β-nucleosides. The strongest fluorescence decrease appeared in duplexes incorporating αGd*-Cd base pair matches. Decreasing fluorescence corresponds to increasing Tm values. For mismatch discrimination, the α-anomers αGd* and αGd are more efficient than the corresponding β-nucleosides. Duplexes with single "purine-purine" αGd*-αGd* or αGd-αGd base pairs are significantly more stable than those displaying β-d configuration. CD spectra indicate that single mutations by α-anomeric nucleosides do not affect the global structure of B-DNA.
Collapse
Affiliation(s)
- Jiang Liu
- Laboratory of Bioorganic Chemistry and Chemical Biology , Center for Nanotechnology , Heisenbergstrasse 11 , 48149 Münster , Germany.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, and Department of Oral Medicine of West China Hospital of Stomatology , Sichuan University , Chengdu , 610041 Sichuan , P. R. China.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien , Universität Osnabrück , Barbarastrasse 7 , 49069 Osnabrück , Germany
| | - Sachin A Ingale
- Laboratory of Bioorganic Chemistry and Chemical Biology , Center for Nanotechnology , Heisenbergstrasse 11 , 48149 Münster , Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien , Universität Osnabrück , Barbarastrasse 7 , 49069 Osnabrück , Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology , Center for Nanotechnology , Heisenbergstrasse 11 , 48149 Münster , Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien , Universität Osnabrück , Barbarastrasse 7 , 49069 Osnabrück , Germany
| |
Collapse
|