1
|
Ren H, Wang YJ, Wang XY, Li X, Han Z, Zhang G, Gu L, Bai M, Yao GD, Liu Q, Song SJ. Design of ROS-Triggered Sesquiterpene Lactone SC Prodrugs as TrxR1 Covalent Inhibitors for the Treatment of Non-Small Cell Lung Cancer. J Med Chem 2025; 68:3088-3122. [PMID: 39869029 DOI: 10.1021/acs.jmedchem.4c02334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Thioredoxin reductase 1 (TrxR1) is an important therapeutic target for nonsmall cell lung cancer (NSCLC) treatment due to its overexpression in NSCLC cells. In this work, to address the deficiency that sesquiterpene lactone containing α-methylene-γ-lactone moiety was rapidly metabolized by endogenous nucleophiles, series of novel thioether derivatives were designed and synthesized based on a reactive oxygen species (ROS)-triggered prodrug strategy. Among them, prodrug 5u exhibited potent cytotoxicity against NSCLC cells and better release rates in response to ROS. The active compound 6a released from 5u covalently binds to Cys475 and Sec498 sites on TrxR1, resulting in inhibition on TrxR1 activity, which led to redox homeostasis disorder, and caused apoptosis and ferroptosis. Moreover, prodrug 5u exhibited significant antitumor efficiency in nude mice and NSCLC organoids. Our results deliver ROS-triggered prodrug 5u as a novel TrxR1 inhibitor for the treatment of NSCLC and provide a promising strategy of ROS-activated prodrug for covalent compounds in cancer therapy.
Collapse
Affiliation(s)
- Hui Ren
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yu-Jue Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xin-Ye Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiangyun Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zheng Han
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Guxue Zhang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Liwei Gu
- Institute of Chinese Materia Medica, Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ming Bai
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| |
Collapse
|
2
|
Patouret R, Cham N, Chiba S. Collective Synthesis of Highly Oxygenated (Furano)germacranolides Derived from Elephantopus mollis and Elephantopus tomentosus. Angew Chem Int Ed Engl 2024; 63:e202402050. [PMID: 38488804 DOI: 10.1002/anie.202402050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Indexed: 04/06/2024]
Abstract
Germacranolides, secondary metabolites produced by plants, have garnered academic and industrial interest due to their diverse and complex topology as well as a wide array of pharmacological activities. Molephantin, a highly oxygenated germacranolide isolated from medicinal plants, Elephantopus mollis and Elephantopus tomentosus, has exhibited antitumor, inflammatory, and leishmanicidal activities. Its chemical structure is based on a highly strained ten-membered macrocyclic backbone with an (E,Z)-dienone moiety, which is fused with an α-methylene-γ-butyrolactone and adorned with four successive stereogenic centers. Herein, we report the first synthesis of molephantin in 12 steps starting from readily available building blocks. The synthesis features the highly diastereoselective intermolecular Barbier allylation of the β,γ-unsaturated aldehyde with optically active 3-bromomethyl-5H-furan-2-one intermediate and ensuing Nozaki-Hiyama-Kishi (NHK) macrocyclization for the construction of the highly oxygenated ten-membered macrocyclic framework. This synthetic route enabled access to another germacranolide congener, tomenphantopin F. Furthermore, cycloisomerization of molephantin into 2-deethoxy-2β-hydroxyphantomolin could be facilitated by irradiation with ultraviolet A light (λmax=370 nm), which opened a versatile and concise access to the related furanogermacranolides such as EM-2, phantomolin, 2-O-demethyltomenphantopin C, and tomenphantopin C.
Collapse
Affiliation(s)
- Rémi Patouret
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Ning Cham
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Shunsuke Chiba
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
3
|
Fernandes RA, Ranjan RS. Diastereoselective allylation-based asymmetric total synthesis of 1,10- seco-guaianolides. Org Biomol Chem 2024; 22:811-822. [PMID: 38170531 DOI: 10.1039/d3ob02013d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A Cr(II)-mediated Nozaki-Hiyama allylation of aldehydes with functionalized chiral allylbromolactone paved the way to easily access β-hydroxy-aryl/alkyl-α-methylene-γ-butyrolactones in good yields with high diastereoselectivities. A subsequent undemanding translactonization was orchestrated in the efficient first asymmetric total synthesis of two 1,10-seco-guaianolides as a valuable extension of the strategy developed.
Collapse
Affiliation(s)
- Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, Maharashtra, India.
| | - Ravikant S Ranjan
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, Maharashtra, India.
| |
Collapse
|
4
|
Fernandes RA, Ramakrishna GV. Diastereoselective Allylation in the Divergent Total Syntheses of Guaianolides (+)-Ligustrin and (+)-Grosheimin and the Formal Synthesis of (−)-Eupalinilide E. J Org Chem 2022. [DOI: 10.1021/acs.joc.2c02094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rodney A. Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai Mumbai 400076, Maharashtra, India
| | - Gujjula V. Ramakrishna
- Department of Chemistry, Indian Institute of Technology Bombay, Powai Mumbai 400076, Maharashtra, India
| |
Collapse
|
5
|
3-Methyl 5-{3-[(4-Methylbenzenesulfonyl)oxy]propyl} 4-(2,3-Dichlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate. MOLBANK 2022. [DOI: 10.3390/m1460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 1,4-dihydropyridine is a ubiquitous scaffold employed not only in medicinal chemistry but also in organic synthesis, given its ability to act as a hydrogen transfer reagent, thus emulating NAD(P)H reducing agents. In this work, we describe the synthesis of 3-methyl 5-{3-[(4-methylbenzenesulfonyl)oxy]propyl} 4-(2,3-dichlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate as scaffold, which enables downstream derivatization towards new 1,4-dihydropyridine molecules. Inspired by the literature, a new two-step synthesis was planned that involved: (i) synthesis of a silylated 1,4-dihydropyridine derivative and (ii) deprotection and tosylation in one step using tosyl fluoride.
Collapse
|
6
|
Liu W, Winssinger N. Synthesis of α-exo-Methylene-γ-butyrolactones: Recent Developments and Applications in Natural Product Synthesis. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1577-6085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractThe α-exo-methylene-γ-butyrolactone moiety is present in a vast array of structurally diverse natural products and is often central to their biological activity. In this short review, we summarize new approaches to α-exo-methylene-γ-butyrolactones developed over the past decade as well as their applications in total synthesis.1 Introduction2 Approaches to α-exo-Methylene-γ-butyrolactones2.1 Enantioselective Synthesis via Lactonization Approaches2.2 Enantioselective Halolactonizations2.3 Enantioselective Barbier-Type Allylation2.4 C–H Insertion/Olefination Sequences2.5 Alkene Cyclization2.6 Strain-Driven Dyotropic Rearrangement3 β-(Hydroxymethylalkyl)-α-exo-methylene-γ-butyrolactones4 Applications in Total Synthesis4.1 Sesquiterpene Lactones4.2 Lignans4.3 Other Monocyclic Natural Products4.4 Choice of Methodology in Recent Total Syntheses5 Summary and Outlook
Collapse
|
7
|
Lee HR, Kim SY, Park MJ, Park YS. An access to highly enantioenriched cis-3,5-disubstituted γ-lactones from α-bromoacetate and silyl enol ether. Org Biomol Chem 2021; 19:7655-7663. [PMID: 34524343 DOI: 10.1039/d1ob01403j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel synthetic strategy for highly enantioenriched cis-3,5-disubstituted γ-lactones has been developed by the AgOTf-promoted nucleophilic substitution of α-bromoacetates with silyl enol ethers and subsequent reductive lactonization. The utility of this synthetic method was further demonstrated through the concise stereodivergent synthesis of cis- and trans-2,4-disubstituted tetrahydrofurans.
Collapse
Affiliation(s)
- Ha Rim Lee
- Department of Chemistry, Konkuk University, Seoul 05029, Korea.
| | - Seo Yun Kim
- Department of Chemistry, Konkuk University, Seoul 05029, Korea.
| | - Min Ji Park
- Department of Chemistry, Konkuk University, Seoul 05029, Korea.
| | - Yong Sun Park
- Department of Chemistry, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
8
|
Liu W, Yu Z, Winssinger N. Total Syntheses of Paraconic Acids and 1,10- seco-Guaianolides via a Barbier Allylation/Translactonization Cascade of 3-(Bromomethyl)-2(5 H)-furanone. Org Lett 2021; 23:969-973. [PMID: 33502871 DOI: 10.1021/acs.orglett.0c04165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A palladium-catalyzed Barbier allylation/translactonization cascade reaction was established for the rapid construction of β,γ-disubstituted α-exo-methylene-γ-butyrolactone, an important motif in sesquiterpenes. Dimethyl zinc played significant roles in both steps for the umpolung of π-allylpalladium as a nucleophile and promoting a Lewis acid-mediated translactonization. This sequence showed a broad substrate scope and was further harnessed for the synthesis of two paraconic acids as well as the first protecting-group-free total synthesis of two 1,10-seco-guaianolides.
Collapse
Affiliation(s)
- Weilong Liu
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 1205 Geneva, Switzerland
| | - Zhimei Yu
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 1205 Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
9
|
Hong B, He J, Fan C, Tang C, Le Q, Bai K, Niu S, Xiao M. Synthesis and Biological Evaluation of Analogues of Butyrolactone I as PTP1B Inhibitors. Mar Drugs 2020; 18:md18110526. [PMID: 33114258 PMCID: PMC7690921 DOI: 10.3390/md18110526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/30/2022] Open
Abstract
In recent years, a large number of pharmacologically active compounds containing a butenolide functional group have been isolated from secondary metabolites of marine microorganisms. Butyrolactone I was found to be produced by Aspergillus terreus isolated from several marine-derived samples. The hypoglycemic activity of butyrolactone I has aroused our great interest. In this study, we synthesized six racemic butenolide derivatives (namely BL-1–BL-6) by modifying the C-4 side chain of butyrolactone I. Among them, BL-3 and BL-5 improved the insulin resistance of HepG2 cells and did not affect the proliferation of RIN-m5f cell line, which indicated the efficacy and safety of BL-3 and BL-5. Furthermore, BL-3, BL-4, BL-5, and BL-6 displayed a significant protein tyrosine phosphatase 1B (PTP1B) inhibitory effect, while the enantiomers of BL-3 displayed different 50% percentage inhibition concentration (IC50) values against PTP1B. The results of molecular docking simulation of the BLs and PTP1B explained the differences of biological consequences observed between the enantiomers of BL-3, which supported BLs as PTP1B inhibitors, and also indicated that the chirality of C-4 might influence the inhibitory effect of the BLs. Our findings provide a novel strategy for the development of butyrolactone derivatives as potential PTP1B inhibitors for the treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Bihong Hong
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (J.H.); (C.T.); (Q.L.); (K.B.); (S.N.)
- Technical Innovation Center for Exploitation of Marine Biological Resources, Ministry of Natural Resources, Xiamen 361005, China;
- Correspondence: (B.H.); (M.X.); Tel.: +86-0592-2195265 (B.H.); +86-0592-6162300 (M.X.)
| | - Jianlin He
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (J.H.); (C.T.); (Q.L.); (K.B.); (S.N.)
- Technical Innovation Center for Exploitation of Marine Biological Resources, Ministry of Natural Resources, Xiamen 361005, China;
| | - Chaochun Fan
- Technical Innovation Center for Exploitation of Marine Biological Resources, Ministry of Natural Resources, Xiamen 361005, China;
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Chao Tang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (J.H.); (C.T.); (Q.L.); (K.B.); (S.N.)
- Technical Innovation Center for Exploitation of Marine Biological Resources, Ministry of Natural Resources, Xiamen 361005, China;
| | - Qingqing Le
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (J.H.); (C.T.); (Q.L.); (K.B.); (S.N.)
- Technical Innovation Center for Exploitation of Marine Biological Resources, Ministry of Natural Resources, Xiamen 361005, China;
| | - Kaikai Bai
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (J.H.); (C.T.); (Q.L.); (K.B.); (S.N.)
- Technical Innovation Center for Exploitation of Marine Biological Resources, Ministry of Natural Resources, Xiamen 361005, China;
| | - Siwen Niu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (J.H.); (C.T.); (Q.L.); (K.B.); (S.N.)
- Technical Innovation Center for Exploitation of Marine Biological Resources, Ministry of Natural Resources, Xiamen 361005, China;
| | - Meitian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
- Correspondence: (B.H.); (M.X.); Tel.: +86-0592-2195265 (B.H.); +86-0592-6162300 (M.X.)
| |
Collapse
|
10
|
He H, Liu Z, Wang W, Jiang X. Synthesis and cytotoxic evaluation of halogenated α-exo-methylene-lactones. Bioorg Med Chem 2020; 28:115281. [PMID: 31889606 DOI: 10.1016/j.bmc.2019.115281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/03/2019] [Accepted: 12/18/2019] [Indexed: 11/26/2022]
Abstract
α-exo-Methylene-γ-butyrolactones and α-exo-methylene-δ-valerolactones constitute an important group of natural and bioactive products. A simple and general protocol of halolactonization of dienoic acids to obtain various α-exo-methylene-lactones in excellent yields is described. The resulting halogenated α-exo-methylene-lactones were found to exhibit potent cytotoxic activities.
Collapse
Affiliation(s)
- Haoquan He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zheng Liu
- Foshan Stomatology Hospital, School of Stomatology and Medicine, Foshan University, Foshan 528000, China
| | - Wei Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiaojian Jiang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
11
|
Wang W, He H, Gan M, Wang H, Wang Y, Jiang X. Enantioselective Syntheses of α‐
exo
‐Methylene‐Lactones via Organocatalytic Halolactonization. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900728] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wei Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of PharmacyJinan University Guangzhou 510632 People's Republic of China
| | - Haoquan He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of PharmacyJinan University Guangzhou 510632 People's Republic of China
| | - Min Gan
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of PharmacyJinan University Guangzhou 510632 People's Republic of China
| | - Haitao Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of PharmacyJinan University Guangzhou 510632 People's Republic of China
| | - Yuqiang Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of PharmacyJinan University Guangzhou 510632 People's Republic of China
| | - Xiaojian Jiang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of PharmacyJinan University Guangzhou 510632 People's Republic of China
| |
Collapse
|
12
|
Kędzia J, Bartosik T, Drogosz J, Janecka A, Krajewska U, Janecki T. Synthesis and Cytotoxic Evaluation of 3-Methylidenechroman-4-ones. Molecules 2019; 24:molecules24101868. [PMID: 31096601 PMCID: PMC6572547 DOI: 10.3390/molecules24101868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 11/24/2022] Open
Abstract
In the search for new anticancer agents, a library of variously substituted 3-methylidenechroman-4-ones was synthesized using Horner–Wadsworth–Emmons methodology. Acylation of diethyl methylphosphonate with selected ethyl salicylates furnished 3-diethoxyphosphorylchromen-4-ones which were next used as Michael acceptors in the reaction with various Grignard reagents. The adducts were obtained as the mixtures of trans and cis diastereoisomers along with a small amount of enol forms. Their relative configuration and preferred conformation were established by NMR analysis. The adducts turned up to be effective Horner–Wadsworth–Emmons reagents giving 2-substituted 3-methylidenechroman-4-ones, which were then tested for their possible cytotoxic activity against two leukemia cell lines, HL-60 and NALM-6, and against MCF-7 breast cancer cell line. All new compounds (14a–o) were highly cytotoxic for the leukemic cells and showed a moderate or weak effect on MCF-7 cells. Analog 14d exhibited the highest growth inhibitory activity and was more potent than carboplatin against HL-60 (IC50 = 1.46 ± 0.16 µM) and NALM-6 (IC50 = 0.50 ± 0.05 µM) cells. Further tests showed that 14d induced apoptosis in NALM-6 cells, which was mediated mostly through the extrinsic pathway.
Collapse
Affiliation(s)
- Jacek Kędzia
- Institute of Organic Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland.
| | - Tomasz Bartosik
- Institute of Organic Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland.
| | - Joanna Drogosz
- Department of Biomolecular Chemistry, Medical University of Łódź, Mazowiecka 6/8, 92-215 Łódź, Poland.
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Łódź, Mazowiecka 6/8, 92-215 Łódź, Poland.
| | - Urszula Krajewska
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Faculty of Pharmacy, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland.
| | - Tomasz Janecki
- Institute of Organic Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland.
| |
Collapse
|