1
|
Kumar M, Chakraborty S, Nayek HP. Organotin(IV) compounds catalyzed cyanide-free synthesis of α-iminonitriles. Dalton Trans 2025; 54:8470-8482. [PMID: 40298964 DOI: 10.1039/d5dt00492f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Two polydentate pro-ligands (H2L1 and H3L2) have been reacted with different organotin(IV) halides such as Ph2SnCl2, (t-Bu)2SnCl2, and (n-Bu)2SnCl2 to synthesize six organotin(IV) compounds, [R2Sn(L1)] (R = Ph (1), t-Bu (2), n-Bu (3)) and [R2Sn(HL2)] (R = Ph (4), t-Bu (5), n-Bu (6)), respectively. All organotin(IV) compounds were characterized by FT-IR spectroscopy, 1H, 13C{1H}, and 119Sn{1H} NMR spectroscopy, HR-MS spectrometry, and single-crystal X-ray diffraction analysis. The single-crystal X-ray diffraction analyses reveal that all compounds contain a penta-coordinated tin atom except 1. Compound 1 is hexacoordinated. All organotin compounds show catalytic efficiency towards the synthesis of α-iminonitriles, with a maximum yield of up to 88%. The α-iminonitriles are synthesized from trans-β-nitrostyrene derivatives and 2-aminopyridine derivatives without using any cyanating agent.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, Jharkhand, India.
| | - Sudipta Chakraborty
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, Jharkhand, India.
| | - Hari Pada Nayek
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, Jharkhand, India.
| |
Collapse
|
2
|
Wu Q, Wang X, Ni Q. Dearomative Ring-Opening of N-Fused Heteroarenes: Access to Tetrasubstituted Alkenes and Ketimines. J Org Chem 2025; 90:5720-5724. [PMID: 40231730 DOI: 10.1021/acs.joc.5c00435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
We report a novel and efficient strategy for constructing tetrasubstituted alkenes and α-iminonitriles from 3-aminoindolizines and 3-aminoimidazo[1,2-a]pyridines. This approach involves a dearomative ring-opening of N-fused heteroaromatic amines coupled to a DDQ-mediated oxidative process under mild, metal-free conditions. The methodology demonstrates broad substrate scope, excellent functional group tolerance, and scalability, offering a versatile platform for synthesizing complex alkenes and nitrile-containing frameworks.
Collapse
Affiliation(s)
- Qianling Wu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, Anhui, P. R. China
| | - Xiaojing Wang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, Anhui, P. R. China
| | - Qijian Ni
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, Anhui, P. R. China
| |
Collapse
|
3
|
Leclercq E, Chevet L, David N, Durandetti M, Chausset-Boissarie L. Synthesis of N-heterocyclic amides from imidazoheterocycles through convergent paired electrolysis. Org Biomol Chem 2024; 22:8730-8736. [PMID: 39390973 DOI: 10.1039/d4ob01115e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
An efficient ring opening of imidazoheterocycles induced by a direct C-H azidation resulting in an unusual formation of N-heterocyclic amides has been successfully developed through convergent paired electrolysis. A broad scope of pyridylbenzamides could be obtained in moderate to excellent yields under exogenous-oxidant, electrolyte- and metal-free electrochemical conditions. The methodology was transferred to continuous flow conditions resulting in notable improvements particularly in terms of cost-efficiency over traditional batch versions.
Collapse
Affiliation(s)
- Elise Leclercq
- Univ. Lille, CNRS, USR 3290, MSAP, F-59000 Lille, France
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA, F-76000 Rouen, France.
| | - Laura Chevet
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA, F-76000 Rouen, France.
| | - Nicolas David
- Univ. Lille, CNRS, USR 3290, MSAP, F-59000 Lille, France
| | - Muriel Durandetti
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA, F-76000 Rouen, France.
| | - Laëtitia Chausset-Boissarie
- Univ. Lille, CNRS, USR 3290, MSAP, F-59000 Lille, France
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA, F-76000 Rouen, France.
| |
Collapse
|
4
|
Li Y, Wan TB, Guo B, Qi XW, Zhu C, Shen MH, Xu HD. Quaternization of azido-N-heteroarenes with Meerwein reagent: a straightforward synthesis of 2-azido(benzo)imidazolium and related azido-N-heteroarenium tetrafluoroborates. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
5
|
Mironova IA, Kirsch SF, Zhdankin V, Yoshimura A, Yusubov MS. Hypervalent Iodine‐Mediated Azidation Reactions. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Irina A. Mironova
- Tomsk Polytechnic University: Nacional'nyj issledovatel'skij Tomskij politehniceskij universitet Chemistry RUSSIAN FEDERATION
| | - Stefan F. Kirsch
- Bergische Universität Wuppertal: Bergische Universitat Wuppertal Fakultät für Mathematik und Naturwissenschaften GERMANY
| | - Viktor Zhdankin
- University of Minnesota Duluth Chemistry 1039 University Dr 55812 Duluth UNITED STATES
| | - Akira Yoshimura
- Aomori University: Aomori Daigaku Department of Pharmacy JAPAN
| | - Mekhman S. Yusubov
- Tomsk Polytechnic University: Nacional'nyj issledovatel'skij Tomskij politehniceskij universitet Chemistry RUSSIAN FEDERATION
| |
Collapse
|
6
|
Zhou J, Shi X, Zheng H, Chen G, Zhang C, Liu X, Cao H. Deconstructive Cycloaromatization Strategy toward N, O-Bidentate Ligands from Indolizines and Cyclopropenones. Org Lett 2022; 24:3238-3243. [PMID: 35446037 DOI: 10.1021/acs.orglett.2c01030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The innovative construction of novel N,O-bidentate ligands represents a long-standing challenge for chemists. Here, we report an unprecedented approach for the construction of N,O-bidentate derivatives via the merging of ring deconstruction with cycloaromatization of indolizines and cyclopropenones. Without any catalysts, our method can deliver a series of polyaryl 2-(pyridin-2-yl)phenols in excellent yields. In addition, N,O-bidentate organic BF2 complexes can also be constructed via this one-pot protocol.
Collapse
Affiliation(s)
- Jinlei Zhou
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Xiaotian Shi
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Huitao Zheng
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Guangxian Chen
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Chen Zhang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Xiang Liu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| |
Collapse
|
7
|
Takenaga N, Dohi T, China H, Kumar R. Azido, Cyano, and Nitrato Cyclic Hypervalent Iodine(III) Reagents in Heterocycle Synthesis. HETEROCYCLES 2021. [DOI: 10.3987/rev-20-sr(k)5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
|