1
|
Adam Elzubier Adam H, Zhou S, Zeng Q. Advances in cross-coupling and oxidative coupling reactions of NH-sulfoximines - a review. Chem Commun (Camb) 2025; 61:1934-1943. [PMID: 39757832 DOI: 10.1039/d4cc05308g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Due to the special structure and physicochemical properties of sulfoximines, research on sulfoximines has achieved great progress in recent decades, especially in chemical and medicinal fields. This review highlights recent advancements in the N-functionalization of NH-sulfoximines, focusing on classical cross-coupling reactions with electrophilic agents and oxidative coupling reactions with extensive organic compounds, including specific (hetero)arenes, alkenes (1,4-naphthoquinones), alkanes (cyclohexanes), nucleophiles (thiols, disulfides, sulfinates, diarylphosphine oxides), organyl boronic acids, and arylhydrazines. Transition metal-catalyzed, metal-free, electrochemical and radical oxidative coupling reactions are discussed. This review also reports and discusses the mechanistic pathways of some typical reactions.
Collapse
Affiliation(s)
- Hala Adam Elzubier Adam
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| | - Sihan Zhou
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| | - Qingle Zeng
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| |
Collapse
|
2
|
Simone M, Pulpito M, Perna FM, Capriati V, Vitale P. Switchable Deep Eutectic Solvents for Sustainable Sulfonamide Synthesis. Chemistry 2024; 30:e202402293. [PMID: 39037002 DOI: 10.1002/chem.202402293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 07/23/2024]
Abstract
A sustainable and scalable protocol for synthesizing variously functionalized sulfonamides, from amines and sulfonyl chlorides, has been developed using environmentally responsible and reusable choline chloride (ChCl)-based deep eutectic solvents (DESs). In ChCl/glycerol (1 : 2 mol mol-1) and ChCl/urea (1 : 2 mol mol-1), these reactions yield up to 97 % under aerobic conditions at ambient temperature within 2-12 h. The practicality of the method is exemplified by the sustainable synthesis of an FFA4 agonist and a key building block en route to anti-Alzheimer drug BMS-299897. A subtle interplay of electronic effects and the solubility characteristics of the starting materials in the aforementioned DESs seem to be responsible for driving the reaction successfully over the hydrolysis of sulfonyl chlorides. The procedure's eco-friendliness is validated by quantitative metrics like the E-factor and the EcoScale, with products isolated by extraction or filtration after decantation.
Collapse
Affiliation(s)
- Maristella Simone
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, Bari, I-70125, Italy
| | - Mara Pulpito
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, Bari, I-70125, Italy
| | - Filippo Maria Perna
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, Bari, I-70125, Italy
| | - Vito Capriati
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, Bari, I-70125, Italy
| | - Paola Vitale
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, Bari, I-70125, Italy
| |
Collapse
|
3
|
Xu P, Su W, Ritter T. Decarboxylative sulfoximination of benzoic acids enabled by photoinduced ligand-to-copper charge transfer. Chem Sci 2022; 13:13611-13616. [PMID: 36507153 PMCID: PMC9682917 DOI: 10.1039/d2sc05442f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
Sulfoximines are synthetically important scaffolds and serve important roles in drug discovery. Currently, there is no solution to decarboxylative sulfoximination of benzoic acids; although thoroughly investigated, limited substrate scope and harsh reaction conditions still hold back traditional thermal aromatic decarboxylative functionalization. Herein, we realize the first decarboxylative sulfoximination of benzoic acids via photo-induced ligand to copper charge transfer (copper-LMCT)-enabled decarboxylative carbometalation. The transformation proceeds under mild reaction conditions, has a broad substrate scope, and can be applied to late-stage functionalization of complex small molecules.
Collapse
Affiliation(s)
- Peng Xu
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm Platz 1D-45470 Mülheim an der RuhrGermany
| | - Wanqi Su
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm Platz 1D-45470 Mülheim an der RuhrGermany,Institute of Organic Chemistry, RWTH Aachen UniversityLandoltweg 152074 AachenGermany
| | - Tobias Ritter
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm Platz 1D-45470 Mülheim an der RuhrGermany
| |
Collapse
|
4
|
Andresini M, Tota A, Degennaro L, Bull JA, Luisi R. Synthesis and Transformations of NH-Sulfoximines. Chemistry 2021; 27:17293-17321. [PMID: 34519376 PMCID: PMC9291533 DOI: 10.1002/chem.202102619] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 11/17/2022]
Abstract
Recent years have seen a marked increase in the occurrence of sulfoximines in the chemical sciences, often presented as valuable motifs for medicinal chemistry. This has been prompted by both pioneering works taking sulfoximine containing compounds into clinical trials and the concurrent development of powerful synthetic methods. This review covers recent developments in the synthesis of sulfoximines concentrating on developments since 2015. This includes extensive developments in both S-N and S-C bond formations. Flow chemistry processes for sulfoximine synthesis are also covered. Finally, subsequent transformations of sulfoximines, particularly in N-functionalization are reviewed, including N-S, N-P, N-C bond forming processes and cyclization reactions.
Collapse
Affiliation(s)
- Michael Andresini
- Department of Pharmacy-Drug SciencesUniversity of Bari “A. Moro”Via E. Orabona 470125BariItaly
| | - Arianna Tota
- Department of Pharmacy-Drug SciencesUniversity of Bari “A. Moro”Via E. Orabona 470125BariItaly
| | - Leonardo Degennaro
- Department of Pharmacy-Drug SciencesUniversity of Bari “A. Moro”Via E. Orabona 470125BariItaly
| | - James A. Bull
- Department of Chemistry Imperial College LondonMolecular Sciences Research Hub White City Campus, Wood LaneLondonW12 0BZUK
| | - Renzo Luisi
- Department of Pharmacy-Drug SciencesUniversity of Bari “A. Moro”Via E. Orabona 470125BariItaly
| |
Collapse
|
5
|
Merchan‐Arenas DR, Rivero‐Jerez PS, Pérez EG. Synthesis of
N
‐arylsulfonamides via Chan‐Lam Coupling Between Aryl Boronic Acids and
N
‐[(sulfonyl)imino]phenyliodinanes. ChemistrySelect 2021. [DOI: 10.1002/slct.202103876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Diego R. Merchan‐Arenas
- Department of Organic Chemistry Faculty of Chemistry and Pharmacy Pontificia Universidad Católica de Chile Av. Vicuña Mackenna 4860 Santiago 7820436 Santiago Chile
| | - Paula S. Rivero‐Jerez
- Department of Organic Chemistry Faculty of Chemistry and Pharmacy Pontificia Universidad Católica de Chile Av. Vicuña Mackenna 4860 Santiago 7820436 Santiago Chile
| | - Edwin G. Pérez
- Department of Organic Chemistry Faculty of Chemistry and Pharmacy Pontificia Universidad Católica de Chile Av. Vicuña Mackenna 4860 Santiago 7820436 Santiago Chile
| |
Collapse
|
6
|
Xia J, Zhang K, Mahmood EA. Methods for the synthesis of N-aryl sulfonamides from nitroarenes: an overview. J Sulphur Chem 2021. [DOI: 10.1080/17415993.2021.1964500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jingjing Xia
- Key Laboratory of Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei, China
| | - Kehua Zhang
- Key Laboratory of Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei, China
| | - Evan Abdolkarim Mahmood
- College of Health Sciences, University of Human Development, Sulaimaniyah, Kurdistan Region of Iraq
| |
Collapse
|
7
|
Liu D, Liu Z, Ma C, Jiao K, Sun B, Wei L, Lefranc J, Herbert S, Mei T. Nickel‐Catalyzed
N
‐Arylation of
NH
‐Sulfoximines with Aryl Halides via Paired Electrolysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Dong Liu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Zhao‐Ran Liu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Cong Ma
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Ke‐Jin Jiao
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Bing Sun
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Lei Wei
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Julien Lefranc
- Nuvisan Innovation Campus Berlin GmbH 13353 Berlin Germany
| | - Simon Herbert
- Pharmaceuticals, Research and Development Bayer AG 13353 Berlin Germany
| | - Tian‐Sheng Mei
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
8
|
Liu D, Liu ZR, Ma C, Jiao KJ, Sun B, Wei L, Lefranc J, Herbert S, Mei TS. Nickel-Catalyzed N-Arylation of NH-Sulfoximines with Aryl Halides via Paired Electrolysis. Angew Chem Int Ed Engl 2021; 60:9444-9449. [PMID: 33576561 DOI: 10.1002/anie.202016310] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/31/2021] [Indexed: 11/08/2022]
Abstract
A novel strategy for the N-arylation of NH-sulfoximines has been developed by merging nickel catalysis and electrochemistry (in an undivided cell), thereby providing a practical method for the construction of sulfoximine derivatives. Paired electrolysis is employed in this protocol, so a sacrificial anode is not required. Owing to the mild reaction conditions, excellent functional group tolerance and yield are achieved. A preliminary mechanistic study indicates that the anodic oxidation of a NiII species is crucial to promote the reductive elimination of a C-N bond from the resulting NiIII species at room temperature.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhao-Ran Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Cong Ma
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Ke-Jin Jiao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Bing Sun
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Lei Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Julien Lefranc
- Nuvisan Innovation Campus Berlin GmbH, 13353, Berlin, Germany
| | - Simon Herbert
- Pharmaceuticals, Research and Development, Bayer AG, 13353, Berlin, Germany
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
9
|
Bugaenko DI, Volkov AA, Karchava AV, Yurovskaya MA. Generation of aryl radicals by redox processes. Recent progress in the arylation methodology. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Arylation methods based on the generation and use of aryl radicals have been a rapidly growing field of research in recent years and currently represent a powerful strategy for carbon – carbon and carbon – heteroatom bond formation. The progress in this field is related to advances in the methods for generation of aryl radicals. The currently used aryl radical precursors include aryl halides, aryldiazonium and diaryliodonium salts, arylcarboxylic acids and their derivatives, arylboronic acids, arylhydrazines, organosulfur(II, VI) compounds and some other compounds. Aryl radicals are generated under mild conditions by single electron reduction or oxidation of precursors induced by conventional reagents, visible light or electric current. A crucial role in the development of the radical arylation methodology belongs to photoredox processes either catalyzed by transition metal complexes or organic dyes or proceeding without catalysts. Unlike the conventional transition metal-catalyzed arylation methods, radical arylation reactions proceed very often at room temperature and have high functional group tolerance. Without claiming to be exhaustive, this review covers the most important advances of the current decade in the generation and synthetic applications of (het)aryl radicals. Examples of reactions are given and mechanistic insights are highlighted.
The bibliography includes 341 references.
Collapse
|
10
|
Ghosh P, Ganguly B, Das S. N−H and C−H Functionalization of Sulfoximine: Recent Advancement and Prospects. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000320] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Prasanjit Ghosh
- Department of Chemistry University of North Bengal Darjeeling 734013 West Bengal
| | - Bhaskar Ganguly
- Department of Chemistry University of North Bengal Darjeeling 734013 West Bengal
| | - Sajal Das
- Department of Chemistry University of North Bengal Darjeeling 734013 West Bengal
| |
Collapse
|
11
|
Liu Z, Ebadi A, Toughani M, Mert N, Vessally E. Direct sulfonamidation of (hetero)aromatic C-H bonds with sulfonyl azides: a novel and efficient route to N-(hetero)aryl sulfonamides. RSC Adv 2020; 10:37299-37313. [PMID: 35521237 PMCID: PMC9057145 DOI: 10.1039/d0ra04255b] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022] Open
Abstract
N-Aryl sulfonamides belong to a highly important class of organosulfur compounds which are found in a number of FDA-approved drugs such as dofetilide, dronedarone, ibutilide, sotalol, sulfadiazine, sulfamethizole, vemurafenib, and many more. There is therefore continuing interest in the development of novel and convenient protocols for the preparation of these pharmaceutically important compounds. Recently, direct sulfonamidation of (hetero)aromatic C–H bonds with easily available sulfonyl azides has emerged as an attractive and powerful strategy to access N-(hetero)aryl sulfonamides where non-toxic nitrogen gas forms as the sole by-product. This review highlights recent advances and developments (2012–2020) in this fast growing research area with emphasis on the mechanistic features of the reactions. N-Aryl sulfonamides belong to a highly important class of organosulfur compounds which are found in a number of FDA-approved drugs such as dofetilide, dronedarone, ibutilide, sotalol, sulfadiazine, sulfamethizole, vemurafenib, and many more.![]()
Collapse
Affiliation(s)
- Zhi Liu
- School of Electrical and Automation Engineering, East China Jiaotong University Nanchang 330013 China
| | - Abdolghaffar Ebadi
- Department of Agriculture, Jouybar Branch, Islamic Azad University Jouybar Iran
| | - Mohsen Toughani
- Department of Fishery, Babol Branch, Islamic Azad University Babol Iran
| | - Nihat Mert
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Yuzuncu Yil 65080, Van Turkey
| | | |
Collapse
|
12
|
Copper catalyzed N-arylation of sulfoximines with aryldiazonium salts in the presence of DABCO under mild conditions. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Krauskopf F, Truong K, Rissanen K, Bolm C. [3+2]‐Cycloadditions of
N
‐Cyano Sulfoximines with 1,3‐Dipoles. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Felix Krauskopf
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Khai‐Nghi Truong
- Department of Chemistry University of Jyvaskyla P.O. Box. 35, Survontie 9 B 40014 Jyväskylä Finland
| | - Kari Rissanen
- Department of Chemistry University of Jyvaskyla P.O. Box. 35, Survontie 9 B 40014 Jyväskylä Finland
| | - Carsten Bolm
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
14
|
Zhu Q, Che S, Luo Z, Zhao Z. Ligand-free copper-catalyzed denitrogenative arylation of phosphorylamides with arylhydrazines. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1725577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Qiao Zhu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an-Xianyang New Ecomic Zone, Xianyang, Shaanxi, P. R. China
- School of Chemistry and Materials Science, Huaihua University, Hunan, Huaihua, P. R. China
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Hunan, Huaihua, P. R. China
| | - Shiying Che
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an-Xianyang New Ecomic Zone, Xianyang, Shaanxi, P. R. China
- School of Chemistry and Materials Science, Huaihua University, Hunan, Huaihua, P. R. China
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Hunan, Huaihua, P. R. China
| | - Zhenghong Luo
- School of Chemistry and Materials Science, Huaihua University, Hunan, Huaihua, P. R. China
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Hunan, Huaihua, P. R. China
| | - Zijian Zhao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an-Xianyang New Ecomic Zone, Xianyang, Shaanxi, P. R. China
- School of Chemistry and Materials Science, Huaihua University, Hunan, Huaihua, P. R. China
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Hunan, Huaihua, P. R. China
| |
Collapse
|
15
|
|