1
|
Sankar DC, Perali RS. Stereospecific Synthesis of 1,2,3-Trisubstituted Cyclopropanes from Pseudoglycals. Org Lett 2025; 27:2981-2986. [PMID: 40080810 DOI: 10.1021/acs.orglett.5c00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Strategic design for constructing optically pure 1,2,3-trisubstituted cyclopropanes with three contiguous stereocenters represents a formidable challenge in synthetic organic chemistry. Herein, we report a simple and highly enantiospecific transformation of pseudoglycals into chiral 1,2,3-trisubstituted cyclopropanes, featuring three consecutive stereocenters, involving a stereospecific [1,4]-Wittig rearrangement. The effects of functional group orientation and conformational preferences were studied. Successful gram-scale preparations and subsequent derivatization reactions yielded various cyclopropane scaffolds with multiple stereocenters.
Collapse
Affiliation(s)
- Drisya Chittadi Sankar
- School of Chemistry, University of Hyderabad, C. R. Rao Road, Gachibowli, Hyderabad-500046, India
| | - Ramu Sridhar Perali
- School of Chemistry, University of Hyderabad, C. R. Rao Road, Gachibowli, Hyderabad-500046, India
| |
Collapse
|
2
|
Li Z, Zhang H, Zhao L, Ma Y, Wu Q, Ren H, Lin Z, Zheng J, Yu X. Metal-free β,γ-C(sp 3)-H difunctionalization of propanols: DMP-initiated asymmetric spirocyclopropanation. Chem Commun (Camb) 2024; 60:3579-3582. [PMID: 38470069 DOI: 10.1039/d4cc00116h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
A DMP-initiated metal-free effective β,γ-asymmetric spirocyclopropanation of propanols strategy using oxidative iminium activation is described. This process has been realized by a synergistic amine-catalyzed one-pot cascade oxidation-Michael addition cyclopropanation for "one-pot" access to various spirocyclopropyl propionaldehydes/propanols from diverse 3-arylpropanols and α-brominated active methylene compounds under mild conditions and with high enantioselectivity (ee up to >99%).
Collapse
Affiliation(s)
- Zheyao Li
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy and State Key Laboratory of Bioengineering Reactors, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Huiwen Zhang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy and State Key Laboratory of Bioengineering Reactors, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Lin Zhao
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy and State Key Laboratory of Bioengineering Reactors, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Yueyue Ma
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 West Waihuan Road, Guangzhou 510006, Guangdong, China.
| | - Qiufang Wu
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy and State Key Laboratory of Bioengineering Reactors, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Haosong Ren
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy and State Key Laboratory of Bioengineering Reactors, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Zhongren Lin
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy and State Key Laboratory of Bioengineering Reactors, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Jun Zheng
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy and State Key Laboratory of Bioengineering Reactors, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Xinhong Yu
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy and State Key Laboratory of Bioengineering Reactors, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
3
|
Eskandari M, Jadidi K, Notash B. Substrate-Controlled Diastereo- and Enantiodivergent Synthesis of Bis-Spirocyclopropyloxindoles from Available Isatin as a Single Starting Material. J Org Chem 2023; 88:5254-5274. [PMID: 37083424 DOI: 10.1021/acs.joc.2c02452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The first diastereo- and enantiodivergent asymmetric synthesis of new bis-spirocyclopropyloxindole scaffolds has been accomplished from the readily available isatin as a single starting material. Four rel-(1R,2R,3R), rel-(1S,2S,3R), rel-(1R,2R,3S), and rel-(1S,2S,3S) configurations of desired products were constructed in excellent enantiopurity via a simple switch in substrates using the chiral auxiliary-controlled method. The absolute configuration of cycloadducts with three contiguous quaternary/tertiary stereogenic centers was confirmed through X-ray diffraction analysis. A facile synthesis of versatile precursor 3-chlorooxindoles was also introduced.
Collapse
Affiliation(s)
- Mehdi Eskandari
- Faculty of Chemistry and Petroleum Sciences, Department of Organic Chemistry, Shahid Beheshti University, Tehran 1983963113, Iran
| | - Khosrow Jadidi
- Faculty of Chemistry and Petroleum Sciences, Department of Organic Chemistry, Shahid Beheshti University, Tehran 1983963113, Iran
| | - Behrouz Notash
- Faculty of Chemistry and Petroleum Sciences, Department of Inorganic Chemistry, Shahid Beheshti University, Tehran 1983969411, Iran
| |
Collapse
|
4
|
Manna A, Joshi H, Singh VK. Asymmetric Synthesis of Spiro-3,3'-cyclopropyl Oxindoles via Vinylogous Michael Initiated Ring Closure Reaction. J Org Chem 2022; 87:16755-16766. [PMID: 36468901 DOI: 10.1021/acs.joc.2c02402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel organocatalytic cascade approach for the synthesis of spiro-cyclopropyl oxindole derivatives has been developed. The methodology is based on asymmetric vinylogous Michael addition of 4-nitroisoxazole derivatives to N-Boc isatylidene malonates followed by intramolecular alkylation. Its remarkable stereocontrol, wide substrate scope, and scalability highlight this new developed strategy. Moreover, this work represents the first example of vinylogous Michael initiated ring closure (MIRC) reaction for the synthesis of chiral 3,3'-cyclopropyl oxindole.
Collapse
Affiliation(s)
- Abhijit Manna
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Harshit Joshi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Vinod K Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| |
Collapse
|
5
|
Wang N, Yan X, Hu ZT, Feng Y, Zhu L, Chen ZH, Wang H, Wang QL, Ouyang Q, Zheng PF. Intramolecular H-Bonds in an Organocatalyst Enabled an Asymmetric Michael/Alkylation Cascade Reaction to Construct Spirooxindoles Incorporating a Densely Substituted Cyclopropane Motif. Org Lett 2022; 24:8553-8558. [DOI: 10.1021/acs.orglett.2c03578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Na Wang
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Xiao Yan
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Zi-Tian Hu
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Yi Feng
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Lei Zhu
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Zi-Hang Chen
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Huan Wang
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Quan-Ling Wang
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Peng-Fei Zheng
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
6
|
Kise N, Mitsui Y, Sakurai T. Reductive coupling of isatins with α,β-unsaturated carbonyl compounds by low-valent titanium. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Naoki Kise
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101, Koyama-cho Minami, Tottori 680-8552
- Center for Research on Green Sustainable Chemistry, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552
| | - Yuki Mitsui
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101, Koyama-cho Minami, Tottori 680-8552
| | - Toshihiko Sakurai
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101, Koyama-cho Minami, Tottori 680-8552
- Center for Research on Green Sustainable Chemistry, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552
| |
Collapse
|
7
|
Abstract
This review summaries recent synthetic developments towards spirocyclic oxindoles and applications as valuable medicinal and synthetic targets.
Collapse
Affiliation(s)
- Alexander J. Boddy
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| | - James A. Bull
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| |
Collapse
|
8
|
Li X, Kutta RJ, Jandl C, Bauer A, Nuernberger P, Bach T. Photochemically Induced Ring Opening of Spirocyclopropyl Oxindoles: Evidence for a Triplet 1,3‐Diradical Intermediate and Deracemization by a Chiral Sensitizer. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xinyao Li
- Department Chemie and Catalysis Research Center (CRC) Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Roger J. Kutta
- Institut für Physikalische und Theoretische Chemie Universität Regensburg Universitätsstr. 31 93053 Regensburg Germany
| | - Christian Jandl
- Department Chemie and Catalysis Research Center (CRC) Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Andreas Bauer
- Department Chemie and Catalysis Research Center (CRC) Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie Universität Regensburg Universitätsstr. 31 93053 Regensburg Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC) Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| |
Collapse
|
9
|
Deng YH, Chu WD, Shang YH, Yu KY, Jia ZL, Fan CA. P(NMe2)3-Mediated Umpolung Spirocyclopropanation Reaction of p-Quinone Methides: Diastereoselective Synthesis of Spirocyclopropane-Cyclohexadienones. Org Lett 2020; 22:8376-8381. [DOI: 10.1021/acs.orglett.0c02998] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yu-Hua Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, and School of Chemical Science and Technology, Yunnan University, No. 2 Cuihu North Road, Kunming 650091, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Wen-Dao Chu
- College of Chemistry and Chemical Engineering, China West Normal University, No. 1 Shida Road, Nanchong 637002, China
| | - Yun-Han Shang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, and School of Chemical Science and Technology, Yunnan University, No. 2 Cuihu North Road, Kunming 650091, China
| | - Ke-Yin Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Zhi-Long Jia
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Chun-An Fan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| |
Collapse
|
10
|
Li X, Kutta RJ, Jandl C, Bauer A, Nuernberger P, Bach T. Photochemically Induced Ring Opening of Spirocyclopropyl Oxindoles: Evidence for a Triplet 1,3-Diradical Intermediate and Deracemization by a Chiral Sensitizer. Angew Chem Int Ed Engl 2020; 59:21640-21647. [PMID: 32757341 PMCID: PMC7756555 DOI: 10.1002/anie.202008384] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/23/2020] [Indexed: 12/17/2022]
Abstract
The photochemical deracemization of spiro[cyclopropane‐1,3′‐indolin]‐2′‐ones (spirocyclopropyl oxindoles) was studied. The corresponding 2,2‐dichloro compound is configurationally labile upon direct irradiation at λ=350 nm and upon irradiation at λ=405 nm in the presence of achiral thioxanthen‐9‐one as the sensitizer. The triplet 1,3‐diradical intermediate generated in the latter reaction was detected by transient absorption spectroscopy and its lifetime determined (τ=22 μs). Using a chiral thioxanthone or xanthone, with a lactam hydrogen bonding site as a photosensitizer, allowed the deracemization of differently substituted chiral spirocyclopropyl oxindoles with yields of 65–98 % and in 50–85 % ee (17 examples). Three mechanistic contributions were identified to co‐act favorably for high enantioselectivity: the difference in binding constants to the chiral thioxanthone, the smaller molecular distance in the complex of the minor enantiomer, and the lifetime of the intermediate 1,3‐diradical.
Collapse
Affiliation(s)
- Xinyao Li
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Roger J Kutta
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Christian Jandl
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Andreas Bauer
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| |
Collapse
|