1
|
Nandwana NK, Patel OPS, Mehra MK, Kumar A, Salvino JM. Recent Advances in Metal-Catalyzed Approaches for the Synthesis of Quinazoline Derivatives. Molecules 2024; 29:2353. [PMID: 38792215 PMCID: PMC11124210 DOI: 10.3390/molecules29102353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Quinazolines are an important class of heterocyclic compounds that have proven their significance, especially in the field of organic synthesis and medicinal chemistry because of their wide range of biological and pharmacological properties. Thus, numerous synthetic methods have been developed for the synthesis of quinazolines and their derivatives. This review article briefly outlines the new synthetic methods for compounds containing the quinazoline scaffold employing transition metal-catalyzed reactions.
Collapse
Affiliation(s)
- Nitesh K. Nandwana
- Medicinal Chemistry and Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Om P. S. Patel
- Department of Technical Education, Government Polytechnic Naraini, Banda 210001, India
| | - Manish K. Mehra
- Medicinal Chemistry and Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, India
| | - Joseph M. Salvino
- Medicinal Chemistry and Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Tamatam R, Kim SH, Shin D. Transition-metal-catalyzed synthesis of quinazolines: A review. Front Chem 2023; 11:1140562. [PMID: 37007059 PMCID: PMC10060649 DOI: 10.3389/fchem.2023.1140562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Quinazolines are a class of nitrogen-containing heterocyclic compounds with broad-spectrum of pharmacological activities. Transition-metal-catalyzed reactions have emerged as reliable and indispensable tools for the synthesis of pharmaceuticals. These reactions provide new entries into pharmaceutical ingredients of continuously increasing complexity, and catalysis with these metals has streamlined the synthesis of several marketed drugs. The last few decades have witnessed a tremendous outburst of transition-metal-catalyzed reactions for the construction of quinazoline scaffolds. In this review, the progress achieved in the synthesis of quinazolines under transition metal-catalyzed conditions are summarized and reports from 2010 to date are covered. This is presented along with the mechanistic insights of each representative methodology. The advantages, limitations, and future perspectives of synthesis of quinazolines through such reactions are also discussed.
Collapse
Affiliation(s)
- Rekha Tamatam
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
- Gachon Pharmaceutical Research Institute, Gachon University, Incheon, Republic of Korea
| | - Seok-Ho Kim
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
- *Correspondence: Seok-Ho Kim, ; Dongyun Shin,
| | - Dongyun Shin
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
- Gachon Pharmaceutical Research Institute, Gachon University, Incheon, Republic of Korea
- *Correspondence: Seok-Ho Kim, ; Dongyun Shin,
| |
Collapse
|
3
|
Mazibuko M, Jeena V. Synthesis of 2,4,5-Trisubstituted Oxazoles from Copper-Mediated Benzylic sp 3 C-H Aerobic Oxidative Annulation of Ketones and Amines via a Cascade Reaction. J Org Chem 2023; 88:1227-1234. [PMID: 36575054 DOI: 10.1021/acs.joc.2c02148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The functionalization of sp3 carbons is deemed challenging in synthetic organic chemistry yet has tremendous potential in producing potent organic compounds. A facile synthesis of 2,4,5-trisubstituted oxazoles through an oxidative, copper-catalyzed, and solvent-free annulation is described. Various arylated oxazoles were efficaciously synthesized at a mild temperature from readily available substrates under a molecular oxygen atmosphere. Preliminary mechanistic studies suggested that the reaction proceeds via an anionic-type mechanism and indicated the formation of a keto-imine intermediate. The reaction is notable for the abstraction of six hydrogen atoms, the functionalization of one sp2 carbon and two sp3 carbons, and the formation of C-O and C-N bonds.
Collapse
Affiliation(s)
- Mncedisi Mazibuko
- School of Chemistry and Physics, University of KwaZulu-Natal, Scottsville, Pietermaritzburg 3209, South Africa
| | - Vineet Jeena
- School of Chemistry and Physics, University of KwaZulu-Natal, Scottsville, Pietermaritzburg 3209, South Africa
| |
Collapse
|
4
|
Chen J, Wen K, Wu Y, Deng J, Chen H, Yao X, Tang X. Synthesis of 3,4,5‐Triarylcyclohexanones from Dienones and 2‐Methylquinolines Based on a [5+1] Annulation. ChemistrySelect 2021. [DOI: 10.1002/slct.202103317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jiewen Chen
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University 1023 South Shatai Road, Baiyun District Guangzhou 510515 P. R. China
| | - Kangmei Wen
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University 1023 South Shatai Road, Baiyun District Guangzhou 510515 P. R. China
| | - Yinrong Wu
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University 1023 South Shatai Road, Baiyun District Guangzhou 510515 P. R. China
| | - Jie Deng
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University 1023 South Shatai Road, Baiyun District Guangzhou 510515 P. R. China
| | - Hongyue Chen
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University 1023 South Shatai Road, Baiyun District Guangzhou 510515 P. R. China
| | - Xingang Yao
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University 1023 South Shatai Road, Baiyun District Guangzhou 510515 P. R. China
| | - Xiaodong Tang
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University 1023 South Shatai Road, Baiyun District Guangzhou 510515 P. R. China
| |
Collapse
|
5
|
Wu Y, Li L, Wen K, Deng J, Chen J, Shi J, Wu T, Pang J, Tang X. Copper-Catalyzed C-3 Functionalization of Imidazo[1,2- a]pyridines with 3-Indoleacetic Acids. J Org Chem 2021; 86:12394-12402. [PMID: 34387491 DOI: 10.1021/acs.joc.1c01371] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A copper-catalyzed C-3 functionalization of imidazo[1,2-a]pyridines with 3-indoleacetic acids through an aerobic oxidative decarboxylative process has been developed. The protocol provided a series of 3-(1H-indol-3-ylmethyl)-imidazo[1,2-a]pyridines in moderate to good yields under simple reaction conditions. Importantly, some products exhibited potent antiproliferative activity in cancer cell lines.
Collapse
Affiliation(s)
- Yinrong Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Lu Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Kangmei Wen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Jie Deng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Jiewen Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Jie Shi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Ting Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| | - Xiaodong Tang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 1023 South Shatai Road, Baiyun District, Guangzhou 510515, People's Republic of China
| |
Collapse
|
6
|
Brahmaiah D, Kanaka Durga Bhavani A, Aparna P, Sampath Kumar N, Solhi H, Le Guevel R, Baratte B, Ruchaud S, Bach S, Singh Jadav S, Raji Reddy C, Roisnel T, Mosset P, Levoin N, Grée R. Discovery of DB18, a potent inhibitor of CLK kinases with a high selectivity against DYRK1A kinase. Bioorg Med Chem 2021; 31:115962. [PMID: 33422908 DOI: 10.1016/j.bmc.2020.115962] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
We describe in this paper the synthesis of a novel series of anilino-2-quinazoline derivatives. These compounds have been screened against a panel of eight mammalian kinases and in parallel they were tested for cytotoxicity on a representative panel of seven cancer cell lines. One of them (DB18) has been found to be a very potent inhibitor of human "CDC2-like kinases" CLK1, CLK2 and CLK4, with IC50 values in the 10-30 nM range. Interestingly, this molecule is inactive at 100 μM on the closely related "dual-specificity tyrosine-regulated kinase 1A" (DYRK1A). Extensive molecular simulation studies have been performed on the relevant kinases to explain the strong affinity of this molecule on CLKs, as well as its selectivity against DYRK1A.
Collapse
Affiliation(s)
- Dabbugoddu Brahmaiah
- Chemveda Life Sciences India Pvt. Ltd., #B-11/1, IDA Uppal, Hyderabad 500039, Telangana, India; Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad 500 085, Telangana, India
| | | | - Pasula Aparna
- Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad 500 085, Telangana, India
| | | | - Hélène Solhi
- Univ Rennes, Plateform ImPACcell, BIOSIT, F-35000 Rennes, France
| | - Rémy Le Guevel
- Univ Rennes, Plateform ImPACcell, BIOSIT, F-35000 Rennes, France
| | - Blandine Baratte
- Sorbonne Université, CNRS, FR 2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France; Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
| | - Sandrine Ruchaud
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
| | - Stéphane Bach
- Sorbonne Université, CNRS, FR 2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France; Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
| | - Surender Singh Jadav
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, TS, India
| | - Chada Raji Reddy
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, TS, India
| | - Thierry Roisnel
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France
| | - Paul Mosset
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France
| | - Nicolas Levoin
- Bioprojet-Biotech, 4 rue du Chesnay Beauregard, BP 96205, 35762 Saint Grégoire, France
| | - René Grée
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France.
| |
Collapse
|
7
|
Zhang SQ, Cui Y, Guo B, Young DJ, Xu Z, Li HX. Efficient synthesis of quinazolines by the iron-catalyzed acceptorless dehydrogenative coupling of (2-aminophenyl)methanols and benzamides. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Mohammadkhani L, Heravi MM. Microwave-Assisted Synthesis of Quinazolines and Quinazolinones: An Overview. Front Chem 2020; 8:580086. [PMID: 33282829 PMCID: PMC7705381 DOI: 10.3389/fchem.2020.580086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023] Open
Abstract
Microwave irradiation (MWI), as a unique, effective, sustainable, more economic, and greener source of energy compared to conventional heating, is applied in different organic transformations to result in the rapid formation of desired compounds due to thermal/kinetic effects. In this review, we try to underscore the applications of microwave irradiation (MWI) in the synthesis of quinazoline and quinazolinone derivatives that have been achieved and reported on in the last two decades.
Collapse
|
9
|
Zaib S, Khan I. Recent Advances in the Sustainable Synthesis of Quinazolines Using Earth-Abundant First Row Transition Metals. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200726230848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Achieving challenging molecular diversity in contemporary chemical synthesis
remains a formidable hurdle, particularly in the delivery of diversified bioactive heterocyclic
pharmacophores for drug design and pharmaceutical applications. The coupling methods that
combine a diverse range of readily accessible and commercially available pools of substrates
under the action of earth-abundant first row transition metal catalysts have certainly matured
into powerful tools, thus offering sustainable alternatives to revolutionize the organic synthesis.
This minireview highlights the successful utilization of the catalytic ability of the first
row transition metals (Mn, Fe, Ni, Cu) in the modular assembly of quinazoline heterocycle,
ubiquitously present in numerous alkaloids, commercial medicines and is associated with a
diverse range of pharmacological activities. The broad substrate scope and high functional group tolerance of the
targeted methods were extensively explored, identifying the future strategic advances in the field. The investigation
will also be exemplified with mechanistic studies as long as they are deemed necessary.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - Imtiaz Khan
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
10
|
Aneeja T, Neetha M, Afsina CMA, Anilkumar G. Progress and prospects in copper-catalyzed C-H functionalization. RSC Adv 2020; 10:34429-34458. [PMID: 35514395 PMCID: PMC9056871 DOI: 10.1039/d0ra06518h] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/02/2020] [Indexed: 01/21/2023] Open
Abstract
Copper-catalyzed C-H functionalization is becoming a significant area in organic chemistry. Copper is now widely used as a catalyst in organic synthesis as it is inexpensive and not very toxic. Functionalization of C-H bonds to construct wide varieties of organic compounds has received much attention in recent times. This review focuses on the recent advances in Cu-catalyzed C-H functionalization and covers literature from 2018-2020.
Collapse
Affiliation(s)
- Thaipparambil Aneeja
- School of Chemical Sciences, Mahatma Gandhi University Priyadarsini Hills P.O. Kottayam Kerala 686560 India (+91) 481-2731036
| | - Mohan Neetha
- School of Chemical Sciences, Mahatma Gandhi University Priyadarsini Hills P.O. Kottayam Kerala 686560 India (+91) 481-2731036
| | - C M A Afsina
- School of Chemical Sciences, Mahatma Gandhi University Priyadarsini Hills P.O. Kottayam Kerala 686560 India (+91) 481-2731036
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi University Priyadarsini Hills P.O. Kottayam Kerala 686560 India (+91) 481-2731036
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University Priyadarsini Hills P.O. Kottayam Kerala 686560 India
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS), Mahatma Gandhi University Priyadarsini Hills P.O. Kottayam Kerala 686560 India
| |
Collapse
|
11
|
Chan CK, Lai CY, Wang CC. TMSOTf-catalyzed synthesis of substituted quinazolines using hexamethyldisilazane as a nitrogen source under neat and microwave irradiation conditions. Org Biomol Chem 2020; 18:7201-7212. [DOI: 10.1039/d0ob01507e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An efficient synthetic route for the synthesis of substituted quinazolines under neat, metal-free and microwave irradiation conditions has been developed by using TMSOTf as an acid catalyst and HMDS as a nitrogen source.
Collapse
Affiliation(s)
| | - Chien-Yu Lai
- Institute of Chemistry
- Academia Sinica
- Taipei 115
- Taiwan
| | | |
Collapse
|