1
|
Yang L, Hou A, Jiang Q, Cheng M, Liu Y. Methodological Development and Applications of Tryptamine-Ynamide Cyclizations in Synthesizing Core Skeletons of Indole Alkaloids. J Org Chem 2023; 88:11377-11391. [PMID: 37540141 DOI: 10.1021/acs.joc.3c01088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Over the past two decades, synthetic strategies for synthesizing the skeletons of various indole alkaloids based on tryptamine-ynamide have been continuously developed and applied to the total syntheses or formal total syntheses of related molecules. In this synopsis, we summarized the cyclization pathways of tryptamine-ynamide under different catalytic conditions, emphasizing the reaction mechanism and applications in the syntheses of indole alkaloids.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Anbin Hou
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Qing Jiang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Yongxiang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| |
Collapse
|
2
|
Sun S, Hao J, Cheng M, Liu Y, Lin B. Computational insight into gold(I)-catalyzed intramolecular regioselectivity of tryptamine-ynamide cycloisomerizations. Org Biomol Chem 2023; 21:2610-2619. [PMID: 36896738 DOI: 10.1039/d3ob00079f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
The regioselectivity for gold(I)-catalyzed intramolecular cycloisomerizations of tryptamine-ynamides has long been elusive despite various synthetic examples of similar substrates being available. Computational studies were carried out to provide insight into the mechanisms and the origin of the substrate-dependent regioselectivity of these transformations. Based on the analyses of non-covalent interactions, distortion/interaction, and energy decomposition on the interactions between the terminal substituent of alkynes and the gold(I) catalytic ligand, the electrostatic effect was determined to be the key factor for α-position selectivity while the dispersion effect was determined to be the key factor for β-position selectivity. Our computational results were consistent with the experimental observations. This study provides useful guidance for understanding other similar gold(I)-catalyzed asymmetric alkyne cyclization reactions.
Collapse
Affiliation(s)
- Shitao Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Jinle Hao
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.
| | - Yongxiang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| |
Collapse
|
3
|
Kumar M, Kaliya K, Maurya SK. Recent progress in the homogeneous gold-catalysed cycloisomerisation reactions. Org Biomol Chem 2023; 21:3276-3295. [PMID: 36989042 DOI: 10.1039/d2ob02015g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
This review focuses on recent advancements in the efficacy of gold catalysts for the cycloisomerisation of ynamides, diynes, and 1,n-enynes to build complex molecules, with critical insight into their mechanism and reaction scope.
Collapse
Affiliation(s)
- Mahender Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176 061, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
| | - Kajal Kaliya
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176 061, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
| | - Sushil K Maurya
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226007, UP, India.
| |
Collapse
|
4
|
Wan Q, Xin L, Zhang J, Huang X. Efficient access to 1,3,4-trisubstituted pyrroles via gold-catalysed cycloisomerization of 1,5-diynes. Org Biomol Chem 2022; 20:1647-1651. [PMID: 35137761 DOI: 10.1039/d1ob02393d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A gold-catalysed cycloisomerization of 1,5-diynes is described, which offers a selective approach to access 1,3,4-trisubstituted pyrroles. In this reaction, the cationic gold catalyst activates the ynamide moiety, initiating the cycloisomerization to produce the pyrrole core, and H2O acts as an external nucleophile to trap the vinyl cationic species, thus leading to the formation of 1,3,4-trisubstituted pyrroles with high selectivity.
Collapse
Affiliation(s)
- Qiuling Wan
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Luoting Xin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Xueliang Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China.
| |
Collapse
|
5
|
Shinde MH, Ramana CV. Facile synthesis of the spiro-pyridoindolone scaffold via a gold-catalysed intramolecular alkynol cyclisation/hydroindolylation. Org Biomol Chem 2022; 20:2086-2095. [PMID: 35188513 DOI: 10.1039/d1ob02483c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A simple approach for the synthesis of pyridoindolone scaffolds with a spiroannulated tetrahydrofuran ring is described. The overall process comprises intramolecular sequential gold-catalysed 5-endo-dig alkynol cycloisomerization and subsequent addition of indole C2 to the in situ generated oxocarbenium cation.
Collapse
Affiliation(s)
- Mahesh H Shinde
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411 008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Chepuri V Ramana
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411 008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
6
|
Lin X, Zhao C, Wang D, Wu G, Chen G, Chen S, Ren H, Deng D, Xu Y, Hu X, Liu Y. BiCl
3
‐Mediated Tandem Cyclization of Tryptamine‐Derived Ynamide: Concise Synthesis of Pentacyclic Spiroindolines and Tricyclic Indole Derivatives. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiao‐Tong Lin
- School of Chemistry and Chemical Engineering Guangzhou University 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| | - Cheng Zhao
- School of Chemistry and Chemical Engineering Guangzhou University 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| | - Da‐Ru Wang
- School of Chemistry and Chemical Engineering Guangzhou University 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| | - Guang‐Cheng Wu
- School of Chemistry and Chemical Engineering Guangzhou University 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| | - Guo‐Shu Chen
- School of Chemistry and Chemical Engineering Guangzhou University 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| | - Shu‐Jie Chen
- School of Chemistry and Chemical Engineering Guangzhou University 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| | - Hai Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang 550014 People's Republic of China
| | - Dong‐Sheng Deng
- College of Chemistry and Chemical Engineering Luoyang Normal University Luoyang 471934 People's Republic of China
| | - Yi‐Bing Xu
- School of Chemistry and Chemical Engineering Guangzhou University 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| | - Xiao‐Wei Hu
- School of Chemistry and Chemical Engineering Guangzhou University 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| | - Yun‐Lin Liu
- School of Chemistry and Chemical Engineering Guangzhou University 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
- State Key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang 550014 People's Republic of China
- Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| |
Collapse
|
7
|
Xin L, Wan W, Yu Y, Wan Q, Ma L, Huang X. Construction of Protoberberine Alkaloid Core through Palladium Carbene Bridging C–H Bond Functionalization and Pyridine Dearomatization. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05156] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Luoting Xin
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Wan Wan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yinghua Yu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Qiuling Wan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Liyao Ma
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Xueliang Huang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Wan W, Liu J, Huang X. Gold-Catalyzed Selective Oxidation of 1,3-Diynamides to Access 4-Oxo-but-2-ynamides. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202007019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Liu J, Zhu L, Wan W, Huang X. Gold-Catalyzed Oxidative Cascade Cyclization of 1,3-Diynamides: Polycyclic N-Heterocycle Synthesis via Construction of a Furopyridinyl Core. Org Lett 2020; 22:3279-3285. [PMID: 32242410 DOI: 10.1021/acs.orglett.0c01086] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A facile and practical approach to construct a furopyridinyl motif through a gold-catalyzed cascade cyclization of easily accessible diynamides is described. This strategy offers a straightforward approach to furo[2,3-c]isoquinoline and 6H-furo[3',2':5,6]pyrido[3,4-b]indole derivatives. The reaction could build up four new bonds and two additional heteroaromatic rings via a single operation. The heterocyclic products show promising blue luminous performance with fluorescence quantum yields up to 75%.
Collapse
Affiliation(s)
- Jibing Liu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Zhu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wan Wan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueliang Huang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Fujian College, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|