1
|
Tisnerat C, Schneider J, Mustière R, Herrero A, Momha R, Damiani C, Agnamey P, Totet A, Marchivie M, Guillon J, Dassonville‐Klimpt A, Sonnet P. Synthesis of New Enantiopure Aminoalcohol Fluorenes as Promising Antimalarial Compounds. ChemMedChem 2025; 20:e202400790. [PMID: 39668712 PMCID: PMC11911300 DOI: 10.1002/cmdc.202400790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
Herein, we report the design, synthesis, and characterisation of a new library of enantiopure aminoalcohol fluorenes, as well as their in vitro evaluation for biological properties, including activity against two strains of P. falciparum (3D7 and W2) and cytotoxicity on the HepG2 cell line. All tested compounds exhibited good to excellent antimalarial potency with IC50 values ranging from 0.7 to 70.2 nM whatever the strain. Interestingly, most compounds showed equal or better antimalarial activity compared to the reference drugs lumefantrine, mefloquine and chloroquine. Despite moderate cytotoxicity in the micromolar range, all aminoalcohol fluorenes displayed an excellent selectivity index higher than 100 due to strong antimalarial activity. Furthermore, we report in silico analyses of physicochemical and pharmacokinetic properties for all compounds, highlighting the drug-likeness of compound 10 and its promising potential for further studies.
Collapse
Affiliation(s)
| | | | - Romain Mustière
- UFR de PharmacieUniversité de Picardie Jules VerneAmiensFrance
| | - Aurélie Herrero
- UFR de PharmacieUniversité de Picardie Jules VerneAmiensFrance
| | - René Momha
- UFR de PharmacieUniversité de Picardie Jules VerneAmiensFrance
| | - Céline Damiani
- UFR de PharmacieUniversité de Picardie Jules VerneAmiensFrance
| | - Patrice Agnamey
- UFR de PharmacieUniversité de Picardie Jules VerneAmiensFrance
| | - Anne Totet
- UFR de PharmacieUniversité de Picardie Jules VerneAmiensFrance
| | - Mathieu Marchivie
- Université de BordeauxCNRSINPICMCBUMR 5026, PessacBordeauxF-33600France
| | - Jean Guillon
- INSERM U1212UMR CNRS 5320Laboratoire ARNAUFR des Sciences PharmaceutiquesUniversité de BordeauxBordeauxFrance
| | | | - Pascal Sonnet
- UFR de PharmacieUniversité de Picardie Jules VerneAmiensFrance
| |
Collapse
|
2
|
Francisco TN, Albuquerque HMT, Silva AMS. An In-Depth Exploration of Six Decades of the Kröhnke Pyridine Synthesis. Chemistry 2024; 30:e202401672. [PMID: 38887986 DOI: 10.1002/chem.202401672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
The Kröhnke Pyridine Synthesis has been discovered about six decades ago (1961), by Fritz Kröhnke and Wilfried Zecher at the University of Giessen. The original method involved the reaction of α-pyridinium methyl ketone salts with α,β-unsaturated carbonyl compounds in the presence of a nitrogen source, frequently ammonium acetate. Since its discovery, the Kröhnke methodology has been demonstrated to be suitable for the preparation of mono-, di-, tri- and tetra-pyridines, with important applications in several research fields. Over the years, a number of modifications to the original approach have been developed and reported, enabling for the broad applicability of these methods even in modern days, also for the synthesis of non-pyridine compounds. In this critical and tutorial review, we will thoroughly explore and discuss the potential of the original method, the refinements that have been made over the years, as well as some applications arising from each type of pyridine and/or non-pyridine compounds produced by Kröhnke's approach.
Collapse
Affiliation(s)
- Telmo N Francisco
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Hélio M T Albuquerque
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Artur M S Silva
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
3
|
Bone KI, Puleo TR, Bandar JS. Direct C-H Hydroxylation of N-Heteroarenes and Benzenes via Base-Catalyzed Halogen Transfer. J Am Chem Soc 2024; 146:9755-9767. [PMID: 38530788 PMCID: PMC11006572 DOI: 10.1021/jacs.3c14058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Hydroxylated (hetero)arenes are valued in many industries as both key constituents of end products and diversifiable synthetic building blocks. Accordingly, the development of reactions that complement and address the limitations of existing methods for the introduction of aromatic hydroxyl groups is an important goal. To this end, we apply base-catalyzed halogen transfer (X-transfer) to enable the direct C-H hydroxylation of mildly acidic N-heteroarenes and benzenes. This protocol employs an alkoxide base to catalyze X-transfer from sacrificial 2-halothiophene oxidants to aryl substrates, forming SNAr-active intermediates that undergo nucleophilic hydroxylation. Key to this process is the use of 2-phenylethanol as an inexpensive hydroxide surrogate that, after aromatic substitution and rapid elimination, provides the hydroxylated arene and styrene byproduct. Use of simple 2-halothiophenes allows for C-H hydroxylation of 6-membered N-heteroarenes and 1,3-azole derivatives, while a rationally designed 2-halobenzothiophene oxidant extends the scope to electron-deficient benzene substrates. Mechanistic studies indicate that aromatic X-transfer is reversible, suggesting that the deprotonation, halogenation, and substitution steps operate in synergy, manifesting in unique selectivity trends that are not necessarily dependent on the most acidic aryl position. The utility of this method is further demonstrated through streamlined target molecule syntheses, examples of regioselectivity that contrast alternative C-H hydroxylation methods, and the scalable recycling of the thiophene oxidants.
Collapse
Affiliation(s)
- Kendelyn I. Bone
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Thomas R. Puleo
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jeffrey S. Bandar
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
4
|
Orozco MI, Moreno P, Guevara M, Abonia R, Quiroga J, Insuasty B, Barreto M, Burbano ME, Crespo-Ortiz MDP. In silico prediction and in vitro assessment of novel heterocyclics with antimalarial activity. Parasitol Res 2023; 123:75. [PMID: 38155300 PMCID: PMC10754745 DOI: 10.1007/s00436-023-08089-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023]
Abstract
The development of new antimalarials is paramount to keep the goals on reduction of malaria cases in endemic regions. The search for quality hits has been challenging as many inhibitory molecules may not progress to the next development stage. The aim of this work was to screen an in-house library of heterocyclic compounds (HCUV) for antimalarial activity combining computational predictions and phenotypic techniques to find quality hits. The physicochemical determinants, pharmacokinetic properties (ADME), and drug-likeness of HCUV were evaluated in silico, and compounds were selected for structure-based virtual screening and in vitro analysis. Seven Plasmodium target proteins were selected from the DrugBank Database, and ligands and receptors were processed using UCSF Chimera and Open Babel before being subjected to docking using Autodock Vina and Autodock 4. Growth inhibition of P. falciparum (3D7) cultures was tested by SYBR Green assays, and toxicity was assessed using hemolytic activity tests and the Galleria mellonella in vivo model. From a total of 792 compounds, 341 with good ADME properties, drug-likeness, and no interference structures were subjected to in vitro analysis. Eight compounds showed IC50 ranging from 0.175 to 0.990 µM, and active compounds included pyridyl-diaminopyrimido-diazepines, pyridyl-N-acetyl- and pyridyl-N-phenyl-pyrazoline derivatives. The most potent compound (UV802, IC50 0.178 µM) showed no toxicophoric and was predicted to interact with P. falciparum 1-cysperoxidredoxin (PfPrx1). For the remaining 7 hits (IC50 < 1 μM), 3 showed in silico binding to PfPrx1, one was predicted to bind the haloacid dehalogenase-like hydrolase and plasmepsin II, and one interacted with the plasmodial heat shock protein 90.
Collapse
Affiliation(s)
| | - Pedro Moreno
- Faculty of Engineering, Universidad del Valle, Cali, Colombia
| | - Miguel Guevara
- Faculty of Engineering, Universidad del Valle, Cali, Colombia
| | - Rodrigo Abonia
- Department of Chemistry, Universidad del Valle, Cali, Colombia
| | - Jairo Quiroga
- Department of Chemistry, Universidad del Valle, Cali, Colombia
| | | | - Mauricio Barreto
- Department of Microbiology, Group of Microbiology and Infectious Diseases, Universidad del Valle, San Fernando Campus, Calle 4 B #36-00, 760043, Cali, Colombia
| | - Maria Elena Burbano
- Department of Microbiology, Group of Microbiology and Infectious Diseases, Universidad del Valle, San Fernando Campus, Calle 4 B #36-00, 760043, Cali, Colombia
| | - Maria Del Pilar Crespo-Ortiz
- Department of Microbiology, Group of Microbiology and Infectious Diseases, Universidad del Valle, San Fernando Campus, Calle 4 B #36-00, 760043, Cali, Colombia.
| |
Collapse
|
5
|
Mee-udorn P, Nutho B, Chootrakool R, Maenpuen S, Leartsakulpanich U, Chitnumsub P, Rungrotmongkol T. Structural dynamics and in silico design of pyrazolopyran-based inhibitors against Plasmodium serine hydroxymethyltransferases. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Dassonville-Klimpt A, Schneider J, Damiani C, Tisnerat C, Cohen A, Azas N, Marchivie M, Guillon J, Mullié C, Agnamey P, Totet A, Dormoi J, Taudon N, Pradines B, Sonnet P. Design, synthesis, and characterization of novel aminoalcohol quinolines with strong in vitro antimalarial activity. Eur J Med Chem 2021; 228:113981. [PMID: 34782182 DOI: 10.1016/j.ejmech.2021.113981] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/16/2022]
Abstract
Malaria is the fifth most lethal parasitic infections in the world. Herein, five new series of aminoalcohol quinolines including fifty-two compounds were designed, synthesized and evaluated in vitro against Pf3D7 and PfW2 strains. Among them, fourteen displayed IC50 values below or near of 50.0 nM whatever the strain with selectivity index often superior to 100.17b was found as a promising antimalarial candidate with IC50 values of 14.9 nM and 11.0 nM against respectively Pf3D7 and PfW2 and a selectivity index higher than 770 whatever the cell line is. Further experiments were achieved to confirm the safety and to establish the preliminary ADMET profile of compound 17b before the in vivo study performed on a mouse model of P. berghei ANKA infection. The overall data of this study allowed to establish new structure-activity relationships and the development of novel agents with improved pharmacokinetic properties.
Collapse
Affiliation(s)
- A Dassonville-Klimpt
- Université de Picardie Jules Verne, AGIR, UFR de Pharmacie, Amiens, UR, 4294, France.
| | - J Schneider
- Université de Picardie Jules Verne, AGIR, UFR de Pharmacie, Amiens, UR, 4294, France
| | - C Damiani
- Université de Picardie Jules Verne, AGIR, UFR de Pharmacie, Amiens, UR, 4294, France
| | - C Tisnerat
- Université de Picardie Jules Verne, AGIR, UFR de Pharmacie, Amiens, UR, 4294, France
| | - A Cohen
- Université Aix-Marseille, IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, Marseille, France
| | - N Azas
- Université Aix-Marseille, IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, Marseille, France
| | - M Marchivie
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, F- 33600 Pessac, France
| | - J Guillon
- Université de Bordeaux, Laboratoire ARNA, UFR des Sciences Pharmaceutiques, Bordeaux, France; INSERM U1212, UMR CNRS 5320, Laboratoire ARNA, Bordeaux, France
| | - C Mullié
- Université de Picardie Jules Verne, AGIR, UFR de Pharmacie, Amiens, UR, 4294, France
| | - P Agnamey
- Université de Picardie Jules Verne, AGIR, UFR de Pharmacie, Amiens, UR, 4294, France
| | - Anne Totet
- Université de Picardie Jules Verne, AGIR, UFR de Pharmacie, Amiens, UR, 4294, France
| | - J Dormoi
- Unité parasitologie et entomologie, Département de microbiologie et de maladies infectieuses, Institut de recherche biomédicale des armées, Marseille, France; Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU Méditerranée Infection, Marseille, France
| | - N Taudon
- Unité de Développements Analytiques et Bioanalyse, IRBA, Brétigny-sur-Orge, France
| | - B Pradines
- Unité parasitologie et entomologie, Département de microbiologie et de maladies infectieuses, Institut de recherche biomédicale des armées, Marseille, France; Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU Méditerranée Infection, Marseille, France; Centre national de référence du paludisme, Marseille, France
| | - P Sonnet
- Université de Picardie Jules Verne, AGIR, UFR de Pharmacie, Amiens, UR, 4294, France.
| |
Collapse
|
7
|
Zhang X, Miao X, Jiang H, Ge F, Sun J, Zhang R, Ouyang Q, Fan W, Zhu Y, Sun Y. Iodine‐Promoted Synthesis of Dipyrazolo/Diuracil‐Fused Pyridines and
o
‐Amino Diheteroaryl ketones via Oxidative Domino Annulation of 2/4‐Methylazaarenes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xin‐Ke Zhang
- School of Pharmacy Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Yantai University Shandong Yantai 264005 People's Republic of China
| | - Xiao‐Yu Miao
- School of Pharmacy Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Yantai University Shandong Yantai 264005 People's Republic of China
| | - Hui‐Ru Jiang
- School of Pharmacy Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Yantai University Shandong Yantai 264005 People's Republic of China
| | - Fei Ge
- School of Pharmacy Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Yantai University Shandong Yantai 264005 People's Republic of China
| | - Jia‐Chen Sun
- School of Pharmacy Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Yantai University Shandong Yantai 264005 People's Republic of China
| | - Rui‐Ying Zhang
- School of Pharmacy Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Yantai University Shandong Yantai 264005 People's Republic of China
| | - Qin Ouyang
- School of Pharmacy Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Yantai University Shandong Yantai 264005 People's Republic of China
| | - Wei‐Yu Fan
- School of Pharmacy Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Yantai University Shandong Yantai 264005 People's Republic of China
| | - Yan‐Ping Zhu
- School of Pharmacy Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Yantai University Shandong Yantai 264005 People's Republic of China
| | - Yuan‐Yuan Sun
- School of Pharmacy Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Yantai University Shandong Yantai 264005 People's Republic of China
| |
Collapse
|
8
|
Efflux Pump Overexpression Profiling in Acinetobacter baumannii and Study of New 1-(1-Naphthylmethyl)-Piperazine Analogs as Potential Efflux Inhibitors. Antimicrob Agents Chemother 2021; 65:e0071021. [PMID: 34097483 DOI: 10.1128/aac.00710-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Overexpression of efflux pumps extruding antibiotics currently used for the treatment of Acinetobacter baumannii infections has been described as an important mechanism causing antibiotic resistance. The first aim of this work was to phenotypically evaluate the overexpression of efflux pumps on a collection of 124 ciprofloxacin-resistant A. baumannii strains. An overexpression of genes encoding one or more efflux pumps was obtained for 19 out of the 34 strains with a positive phenotypic efflux (56%). The most frequent genes overexpressed were those belonging to the RND family, with adeJ being the most prevalent (50%). Interestingly, efflux pump genes coding for MATE and MFS families were also overexpressed quite frequently: abeM (32%) and abaQ (26%). The second aim was to synthesize 1-(1-naphthylmethyl)-piperazine analogs as potential new efflux pump inhibitors and biologically evaluate them against strains with a positive phenotypic efflux. Quinoline and pyridine analogs were found to be more effective than their parent compound, 1-(1-naphthyl methyl)-piperazine. Stereochemistry also played an important part in the inhibitory activity, as quinoline derivative (R)-3a was identified as being the most effective and less cytotoxic. Its inhibitory activity was also correlated with the number of efflux pumps expressed by a strain. The results obtained in this work suggest that quinoline analogs of 1-(1-naphthylmethyl)-piperazine are promising leads in the development of new anti-Acinetobacter baumannii therapeutic alternatives in combination with antibiotics for which an efflux-mediated resistance is suspected.
Collapse
|