1
|
Nemez DB, Kacperkiewicz A, Ortiz RJ, Williams JAG, Herbert DE. 1,7-Dihalogenated BODIPYs: Synthesis, Structure and Photophysics. J Org Chem 2025. [PMID: 40402608 DOI: 10.1021/acs.joc.5c00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) and its derivatives are highly useful fluorescent dyes employed in myriad applications in chemistry and biology. Here, we revisit a series of dihalogenated (Cl, Br, I) BODIPY derivatives with rare 1,7-regiochemistry. In addition to their synthesis and structural characterization, we fill in a missing piece of the current literature by delineating their photophysical behavior, including the light-driven generation of singlet oxygen (1O2) which is mediated with particularly high efficiency by the heavier diiodinated congener.
Collapse
Affiliation(s)
- Dion B Nemez
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Amelia Kacperkiewicz
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Robert J Ortiz
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | | | - David E Herbert
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
2
|
Rezgui SP, Farhi J, Yu H, Sercel ZP, Virgil SC, Stoltz BM. Divergent total syntheses of pyrroloiminoquinone alkaloids enabled by the development of a Larock/Buchwald-Hartwig annulation/cyclization. Chem Sci 2024; 15:12284-12290. [PMID: 39118607 PMCID: PMC11304541 DOI: 10.1039/d4sc02981j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/20/2024] [Indexed: 08/10/2024] Open
Abstract
Pyrroloiminoquinone alkaloids are a large class of natural products that display a wide range of biological activities. Synthetic approaches to these natural products typically rely on a common late-stage C10-oxygenated pyrroloiminoquinone intermediate, but these strategies often lead to lengthy synthetic sequences that are not amenable to divergent syntheses. We devised an alternative approach aimed at the early introduction of the C10 nitrogen, which we hypothesized would enable late-stage diversification. This strategy hinged upon a Larock/Buchwald-Hartwig annulation/cyclization to quickly access the core of these alkaloids. We report the development of this cascade process, which was facilitated by a dual ligand system in addition to selective functionalization of the key intermediate, to provide efficient syntheses of makaluvamines A, C, and D and isobatzelline B, and the first total synthesis of makaluvamine N.
Collapse
Affiliation(s)
- Samir P Rezgui
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena CA 91125 USA
| | - Jonathan Farhi
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena CA 91125 USA
| | - Hao Yu
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena CA 91125 USA
| | - Zachary P Sercel
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena CA 91125 USA
| | - Scott C Virgil
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena CA 91125 USA
| | - Brian M Stoltz
- Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena CA 91125 USA
| |
Collapse
|
3
|
Engelhardt PM, Veronese M, Eryiğit AA, Das A, Kaczmarek AT, Rugarli EI, Schmalz HG. A pH-Sensitive Double Chromophore Fluorescent Dye for Live-Tracking of Lipophagy. Chemistry 2024; 30:e202400808. [PMID: 38506349 DOI: 10.1002/chem.202400808] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/21/2024]
Abstract
Lipid droplet (LD) degradation provides metabolic energy and important building blocks for various cellular processes. The two major LD degradation pathways include autophagy (lipophagy), which involves delivery of LDs to autolysosomes, and lipolysis, which is mediated by lipases. While abnormalities in LD degradation are associated with various pathological disorders, our understanding of lipophagy is still rudimentary. In this study, we describe the development of a lipophilic dye containing two fluorophores, one of which is pH-sensitive and the other pH-stable. We further demonstrate that this "Lipo-Fluddy" can be used to visualize and quantify lipophagy in living cells, in an easily applicable and protein label-free approach. After estimating the ability of compound candidates to penetrate LDs, we synthesized several BODIPY and (pH-switchable) rhodol dyes, whose fluorescence properties (incl. their photophysical compatibility) were analyzed. Of three Lipo-Fluddy dyes synthesized, one exhibited the desired properties and allowed observation of lipophagy by fluorescence microscopy. Also, this dye proved to be non-toxic and suitable for the examination of various cell lines. Moreover, a method was developed to quantify the lipophagy process using flow cytometry, which could be applied in the future in the identification of lipophagy-related genes or in the screening of potential drugs against lipophagy-related diseases.
Collapse
Affiliation(s)
- Pascal M Engelhardt
- Department of Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Matteo Veronese
- Cluster of Excellence-Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Alpay A Eryiğit
- Department of Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Anushka Das
- Cluster of Excellence-Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Alexander T Kaczmarek
- Cluster of Excellence-Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Elena I Rugarli
- Cluster of Excellence-Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Hans-Günther Schmalz
- Department of Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| |
Collapse
|
4
|
A new 3-substituted BODIPY dye: Synthesis, crystal structure, photophysical, non-linear optic and OLED properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Liu BK, Teng KX, Niu LY, Yang QZ. Progress in the Synthesis of Boron Dipyrromethene (BODIPY) Fluorescent Dyes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202111001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Frank FJ, Waddell PG, Hall MJ, Knight JG. Synthesis and Reactivity of 3,5-Diiodo-BODIPYs via a Concerted, Double Aromatic Finkelstein Reaction. Org Lett 2021; 23:8595-8599. [PMID: 34633196 DOI: 10.1021/acs.orglett.1c03317] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
3,5-Diiodo-8-aryl-BODIPYs are prepared from the corresponding 3,5-dichloro- and 3,5-dibromo- congeners via a double aromatic Finkelstein reaction with NaI in refluxing propionitrile, in yields from 51 to 100%. Rate enhancement is observed for 3,5-dibromo-BODIPYs (ArBr > ArCl) suggesting a concerted SNAr mechanism for this transformation. Thus formed 3,5-diiodo-BODIPYs are examined as coupling partners in Migita-Kosugi-Stille, Mizoroki-Heck, Sonogashira, and Suzuki-Miyaura reactions, providing routes toward complex BODIPY architectures.
Collapse
Affiliation(s)
- Felicity J Frank
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, U.K
| | - Paul G Waddell
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, U.K
| | - Michael J Hall
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, U.K
| | - Julian G Knight
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, U.K
| |
Collapse
|
7
|
Buglak AA, Charisiadis A, Sheehan A, Kingsbury CJ, Senge MO, Filatov MA. Quantitative Structure-Property Relationship Modelling for the Prediction of Singlet Oxygen Generation by Heavy-Atom-Free BODIPY Photosensitizers*. Chemistry 2021; 27:9934-9947. [PMID: 33876842 PMCID: PMC8362084 DOI: 10.1002/chem.202100922] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Indexed: 12/30/2022]
Abstract
Heavy-atom-free sensitizers forming long-living triplet excited states via the spin-orbit charge transfer intersystem crossing (SOCT-ISC) process have recently attracted attention due to their potential to replace costly transition metal complexes in photonic applications. The efficiency of SOCT-ISC in BODIPY donor-acceptor dyads, so far the most thoroughly investigated class of such sensitizers, can be finely tuned by structural modification. However, predicting the triplet state yields and reactive oxygen species (ROS) generation quantum yields for such compounds in a particular solvent is still very challenging due to a lack of established quantitative structure-property relationship (QSPR) models. In this work, the available data on singlet oxygen generation quantum yields (ΦΔ ) for a dataset containing >70 heavy-atom-free BODIPY in three different solvents (toluene, acetonitrile, and tetrahydrofuran) were analyzed. In order to build reliable QSPR model, a series of new BODIPYs were synthesized that bear different electron donating aryl groups in the meso position, their optical and structural properties were studied along with the solvent dependence of singlet oxygen generation, which confirmed the formation of triplet states via the SOCT-ISC mechanism. For the combined dataset of BODIPY structures, a total of more than 5000 quantum-chemical descriptors was calculated including quantum-chemical descriptors using density functional theory (DFT), namely M06-2X functional. QSPR models predicting ΦΔ values were developed using multiple linear regression (MLR), which perform significantly better than other machine learning methods and show sufficient statistical parameters (R=0.88-0.91 and q2 =0.62-0.69) for all three solvents. A small root mean squared error of 8.2 % was obtained for ΦΔ values predicted using MLR model in toluene. As a result, we proved that QSPR and machine learning techniques can be useful for predicting ΦΔ values in different media and virtual screening of new heavy-atom-free BODIPYs with improved photosensitizing ability.
Collapse
Affiliation(s)
- Andrey A. Buglak
- Faculty of PhysicsSaint-Petersburg State UniversityUniversiteteskaya Emb. 7–9199034St. PetersburgRussia
| | - Asterios Charisiadis
- Chair of Organic Chemistry School of Chemistry Trinity Biomedical Sciences InstituteTrinity College Dublin The University of Dublin152-160Pearse StreetDublin 2Ireland
| | - Aimee Sheehan
- School of Chemical and Pharmaceutical SciencesTechnological University DublinCity Campus, Kevin StreetDublin 8Ireland
| | - Christopher J. Kingsbury
- Chair of Organic Chemistry School of Chemistry Trinity Biomedical Sciences InstituteTrinity College Dublin The University of Dublin152-160Pearse StreetDublin 2Ireland
| | - Mathias O. Senge
- Institute for Advanced Study (TUM-IAS)Technical University of MunichLichtenberg-Str. 2a85748GarchingGermany
| | - Mikhail A. Filatov
- School of Chemical and Pharmaceutical SciencesTechnological University DublinCity Campus, Kevin StreetDublin 8Ireland
| |
Collapse
|