1
|
Seling N, Atobe M, Kasten K, Firth JD, Karadakov PB, Goldberg FW, O'Brien P. α-Functionalisation of Cyclic Sulfides Enabled by Lithiation Trapping. Angew Chem Int Ed Engl 2024; 63:e202314423. [PMID: 37984884 PMCID: PMC10952194 DOI: 10.1002/anie.202314423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
A general and straightforward procedure for the lithiation trapping of cyclic sulfides such as tetrahydrothiophene, tetrahydrothiopyran and a thiomorpholine is described. Trapping with a wide range of electrophiles is demonstrated, leading to more than 50 diverse α-substituted saturated sulfur heterocycles. The methodology provides access to a range of α-substituted cyclic sulfides that are not easily synthesised by the currently available methods.
Collapse
Affiliation(s)
- Nico Seling
- Department of ChemistryUniversity of YorkYorkYO10 5DDUK
| | - Masakazu Atobe
- Department of ChemistryUniversity of YorkYorkYO10 5DDUK
- Modulus Discovery, Inc.Daiichi Hibiya Building 7th Floor1-18-21 Shimbashi Minato-kuTokyo105-0004Japan
| | - Kevin Kasten
- Department of ChemistryUniversity of YorkYorkYO10 5DDUK
| | | | | | | | - Peter O'Brien
- Department of ChemistryUniversity of YorkYorkYO10 5DDUK
| |
Collapse
|
2
|
Jones SP, Firth JD, Wheldon MC, Atobe M, Hubbard RE, Blakemore DC, De Fusco C, Lucas SCC, Roughley SD, Vidler LR, Whatton MA, Woolford AJA, Wrigley GL, O'Brien P. Exploration of piperidine 3D fragment chemical space: synthesis and 3D shape analysis of fragments derived from 20 regio- and diastereoisomers of methyl substituted pipecolinates. RSC Med Chem 2022; 13:1614-1620. [PMID: 36545433 PMCID: PMC9749955 DOI: 10.1039/d2md00239f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Fragment-based drug discovery is now widely adopted for lead generation in the pharmaceutical industry. However, fragment screening collections are often predominantly populated with flat, 2D molecules. Herein, we report the synthesis of piperidine-based 3D fragment building blocks - 20 regio- and diastereoisomers of methyl substituted pipecolinates using simple and general synthetic methods. cis-Piperidines, accessed through a pyridine hydrogenation were transformed into their trans-diastereoisomers using conformational control and unified reaction conditions. Additionally, diastereoselective lithiation/trapping was utilised to access trans-piperidines. Analysis of a virtual library of fragments derived from the 20 cis- and trans-disubstituted piperidines showed that it consisted of 3D molecules with suitable molecular properties to be used in fragment-based drug discovery programs.
Collapse
Affiliation(s)
- S. Paul Jones
- Department of Chemistry, University of YorkHeslingtonYorkYO10 5DDUK
| | - James D. Firth
- Department of Chemistry, University of YorkHeslingtonYorkYO10 5DDUK
| | - Mary C. Wheldon
- Department of Chemistry, University of YorkHeslingtonYorkYO10 5DDUK
| | - Masakazu Atobe
- Department of Chemistry, University of YorkHeslingtonYorkYO10 5DDUK,Asahi Kasei Pharma Corporation632-1 Mifuku, IzunokuniShizuoka 410-2321Japan
| | - Roderick E. Hubbard
- Department of Chemistry, University of YorkHeslingtonYorkYO10 5DDUK,Vernalis (R&D) Ltd.Granta Park, AbingtonCambridgeCB21 6GBUK
| | | | - Claudia De Fusco
- Bayer AG, Research and Development, Pharmaceuticals, Synthetic Modalities13353BerlinGermany
| | - Simon C. C. Lucas
- Hit Discovery, Discovery Sciences, R&D, AstraZenecaCambridgeCB4 0WGUK
| | | | - Lewis R. Vidler
- Amphista TherapeuticsThe Cori Building, Granta Park, Great AbingtonCambridge CB21 6GQUK
| | - Maria Ann Whatton
- Evotec (UK) LtdDorothy Crowfoot Hodgkin Campus, 114 Innovation Drive, Milton Park, AbingdonOxonOX14 4RZUK
| | | | | | - Peter O'Brien
- Department of Chemistry, University of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
3
|
Kestemont JP, Frost JR, Jacq J, Pasau P, Perl F, Brown J, Tissot M. Scale-Up and Optimization of a Continuous Flow Carboxylation of N-Boc-4,4-difluoropiperidine Using s-BuLi in THF. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | | | - Jérôme Jacq
- UCB Biopharma SPRL, Avenue de l’industrie, 1420 Braine l’Alleud, Belgium
| | - Patrick Pasau
- UCB Biopharma SPRL, Avenue de l’industrie, 1420 Braine l’Alleud, Belgium
| | - Frédéric Perl
- UCB Biopharma SPRL, Avenue de l’industrie, 1420 Braine l’Alleud, Belgium
| | - Julien Brown
- UCB, 216 Bath Road, Slough SL1 3WE, United Kingdom
| | - Matthieu Tissot
- UCB Biopharma SPRL, Avenue de l’industrie, 1420 Braine l’Alleud, Belgium
| |
Collapse
|
4
|
Colella M, Musci P, Cannillo D, Spennacchio M, Aramini A, Degennaro L, Luisi R. Development of a Continuous Flow Synthesis of 2-Substituted Azetines and 3-Substituted Azetidines by Using a Common Synthetic Precursor. J Org Chem 2021; 86:13943-13954. [PMID: 34291947 DOI: 10.1021/acs.joc.1c01297] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The generation and functionalization, under continuous flow conditions, of two different lithiated four-membered aza-heterocycles is reported. N-Boc-3-iodoazetidine acts as a common synthetic platform for the genesis of C3-lithiated azetidine and C2-lithiated azetine depending on the lithiation agent. Flow technology enables easy handling of such lithiated intermediates at much higher temperatures compared to batch processing. Flow technology combined with cyclopentylmethyl ether as an environmentally responsible solvent allows us to address sustainability concerns.
Collapse
Affiliation(s)
- Marco Colella
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy
| | - Pantaleo Musci
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy
| | - Debora Cannillo
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy
| | - Mauro Spennacchio
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy
| | - Andrea Aramini
- Department of Discovery, Dompé Farmaceutici S.p.A., Via Campo di Pile, L'Aquila 67100, Italy
| | - Leonardo Degennaro
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy
| | - Renzo Luisi
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|