1
|
Yagi K, Ohmura T, Suginome M. Direct Access to Benzofurans and Indoles from Ethylene with 2-Methylphenols/Anilines through Iridium-Catalyzed Dehydrogenative Annulation. J Am Chem Soc 2025. [PMID: 40413773 DOI: 10.1021/jacs.5c04631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
The direct conversion of o-cresol and 2-methylphenols to 2-methylbenzofurans was achieved by an Ir/DTBE-DPPE-catalyzed reaction under an atmosphere of ethylene (1 atm). The reaction involves the initial selective formation of a C-C bond at the benzylic C(sp3)-H bond of 2-methylphenols with ethylene without the accommodation of the C(sp2)-H bonds at the 6-positions, which is followed by subsequent C-O bond-forming annulation along with associated dehydrogenation and double bond migration steps. The reaction conditions also allowed for the direct conversion of o-toluidine and 2-methylanilines into 2-methylindoles.
Collapse
Affiliation(s)
- Kaito Yagi
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Toshimichi Ohmura
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Michinori Suginome
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
2
|
Parmar D, Kumar R, Sharma U. C(sp 3)-H Bond Functionalization of 8-Methylquinolines. Chem Asian J 2025; 20:e202401266. [PMID: 39736085 DOI: 10.1002/asia.202401266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
Quinolines have emerged as essential components in various medicinal agents, playing a key role in treating various ailments. Numerous drugs with a quinoline core have been recognized for their antimalarial, antibacterial, and anticancer activities and have been successfully commercialized, including chloroquine, ciprofloxacin, topotecan, etc. Over the past two decades, a tremendous expansion in the C-H bond functionalization of quinoline scaffolds to widen this chemical space for drug discovery have been witnessed. This review article summarizes the efforts toward C(sp3)-H functionalization of 8-methylquinolines for C(sp3)-C/X bond formation under metal and metal-free strategies. Each section briefly overviews the C(sp3)-H functionalization of 8-methylquinoline, highlighting the metal and metal-free approaches.
Collapse
Affiliation(s)
- Diksha Parmar
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur, HP 176061, India
| | - Rohit Kumar
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur, HP 176061, India
- Current Address: Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Upendra Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur, HP 176061, India
| |
Collapse
|
3
|
Kumar S, Borkar V, Mujahid M, Nunewar S, Kanchupalli V. Iodonium ylides: an emerging and alternative carbene precursor for C-H functionalizations. Org Biomol Chem 2022; 21:24-38. [PMID: 36416081 DOI: 10.1039/d2ob01644c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The metal-catalyzed successive activation and functionalization of arene/heteroarene is one of the most fundamental transformations in organic synthesis and leads to privileged scaffolds in natural products, pharmaceuticals, agrochemicals, and fine chemicals. Particularly, transition-metal-catalyzed C-H functionalization of arenes with carbene precursors via metal carbene migratory insertion has been well studied. As a result, diverse carbene precursors have been evaluated, such as diazo compounds, sulfoxonium ylides, triazoles, etc. In addition, there have been significant developments with the use of iodonium ylides as carbene precursors in recent years, and these reactions proceed with high efficiencies and selectivities. This review provides a comprehensive overview of iodonium ylides in C-H functionalizations, including the scope, limitations, and their potential synthetic applications.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Vaishnavi Borkar
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Mohd Mujahid
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Saiprasad Nunewar
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Vinaykumar Kanchupalli
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| |
Collapse
|
4
|
Recent Strategies in Nickel-Catalyzed C–H Bond Functionalization for Nitrogen-Containing Heterocycles. Catalysts 2022. [DOI: 10.3390/catal12101163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
N-heterocycles are ubiquitous in natural products, pharmaceuticals, organic materials, and numerous functional molecules. Among the current synthetic approaches, transition metal-catalyzed C–H functionalization has gained considerable attention in recent years due to its advantages of simplicity, high atomic economy, and the ready availability of starting materials. In the field of N-heterocycle synthesis via C–H functionalization, nickel has been recognized as one of the most important catalysts. In this review, we will introduce nickel-catalyzed intramolecular and intermolecular pathways for N-heterocycle synthesis from 2008 to 2021.
Collapse
|
5
|
Hu X, Luo M, ur Rehman M, Sun J, Yaseen HA, Irshad F, Zhao Y, Wang S, Ma X. Mechanistic insight into the electron-donation effect of modified ZIF-8 on Ru for CO2 hydrogenation to formic acid. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Kumar B, Babu JN, Chowhan LR. Sustainable Synthesis of Highly Diastereoselective & Fluorescent Active Spirooxindoles Catalyzed by Copper Oxide Nanoparticle Immobilized on Microcrystalline Cellulose. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bhupender Kumar
- School for Applied Material Sciences Central University of Gujarat, Sector 30 Gandhinagar Gujarat India
| | - J. Nagendra Babu
- Department of Chemistry School for Basic and Applied Sciences, Central University of Punjab, VPO Ghudda Bathinda Punjab India
| | - L. Raju Chowhan
- School for Applied Material Sciences Central University of Gujarat, Sector 30 Gandhinagar Gujarat India
| |
Collapse
|
7
|
Burke A, Moutayakine A. Accessing medicinally relevant O‐benzofused heterocycles through C‐X activation: Recent trends. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anthony Burke
- University of Evora Chemistry Rua Romão Ramalho, 59 7000 Evora PORTUGAL
| | - Amina Moutayakine
- University of Evora Institute for Advanced Studies and Research: Universidade de Evora Instituto de Investigacao e Formacao Avancada LAQV-Requimte PORTUGAL
| |
Collapse
|
8
|
Application of sulfoxonium ylide in transition-metal-catalyzed C-H bond activation and functionalization reactions. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132478] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
9
|
Lukasevics L, Cizikovs A, Grigorjeva L. C-H bond functionalization by high-valent cobalt catalysis: current progress, challenges and future perspectives. Chem Commun (Camb) 2021; 57:10827-10841. [PMID: 34570134 DOI: 10.1039/d1cc04382j] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the last decade, high-valent cobalt catalysis has earned a place in the spotlight as a valuable tool for C-H activation and functionalization. Since the discovery of its unique reactivity, more and more attention has been directed towards the utilization of cobalt as an alternative to noble metal catalysts. In particular, Cp*Co(III) complexes, as well as simple Co(II) and Co(III) salts in combination with bidentate chelation assistance, have been extensively used for the development of novel transformations. In this review, we have demonstrated the existing trends in the C-H functionalization methodology using high-valent cobalt catalysis and highlighted the main challenges to overcome, as well as perspective directions, which need to be further developed in the future.
Collapse
Affiliation(s)
- Lukass Lukasevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia.
| | - Aleksandrs Cizikovs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia.
| | - Liene Grigorjeva
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia.
| |
Collapse
|
10
|
Desai B, Patel M, Dholakiya BZ, Rana S, Naveen T. Recent advances in directed sp 2 C-H functionalization towards the synthesis of N-heterocycles and O-heterocycles. Chem Commun (Camb) 2021; 57:8699-8725. [PMID: 34397068 DOI: 10.1039/d1cc02176a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heterocyclic compounds are widely present in the core structures of several natural products, pharmaceuticals and agrochemicals, and thus great efforts have been devoted to their synthesis in a mild and simpler way. In the past decade, remarkable progress has been made in the field of heterocycle synthesis by employing C-H functionalization as an emerging synthetic strategy. As a complement to previous protocols, transition metal catalyzed C-H functionalization of arenes using various directing groups has recently emerged as a powerful tool to create different classes of heterocycles. This review is mainly focussed on the recent key progress made in the field of the synthesis of N,O-heterocycles from olefins and allenes by using nitrogen based and oxidizing directing groups.
Collapse
Affiliation(s)
- Bhargav Desai
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | | | | | | | | |
Collapse
|
11
|
Liu X, Chen J, Yang C, Wu Z, Li Z, Shi Y, Huang T, Yang Z, Wu Y. Three-Component Couplings among Heteroarenes, Difluorocyclopropenes, and Water via C-H Activation. Org Lett 2021; 23:6831-6835. [PMID: 34399575 DOI: 10.1021/acs.orglett.1c02392] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Three-component couplings have been realized for efficiently constructing various nitrogen-containing skeletons via C-H activation, where difluorocyclopropenes have been first identified as coupling partners. Many substrates including sp2 and sp3 C-H substrates were well tolerated, furnishing the corresponding products in good yields. Furthermore, a catalyst-dependent reaction was also developed, enabling divergent construction of two different frameworks. The application value of these reactions was demonstrated in gram-scale experiments with as little as 1 mol % catalyst.
Collapse
Affiliation(s)
- Xuexin Liu
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jian Chen
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chunyan Yang
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhouping Wu
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhiyang Li
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuesen Shi
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tianle Huang
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhongzhen Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry of Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry of Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Patel M, Desai B, Ramani A, Dholakiya BZ, Naveen T. Recent Developments in the Palladium‐Catalyzed/Norbornene‐Mediated Synthesis of Carbo‐ and Heterocycles. ChemistrySelect 2021. [DOI: 10.1002/slct.202102641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Monak Patel
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Surat Gujarat 395 007 India
| | - Bhargav Desai
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Surat Gujarat 395 007 India
| | - Arti Ramani
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Surat Gujarat 395 007 India
| | - Bharatkumar Z. Dholakiya
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Surat Gujarat 395 007 India
| | - Togati Naveen
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Surat Gujarat 395 007 India
| |
Collapse
|
13
|
Al Mamari HH, Al Kiumi D, Al Rashdi T, Al Quraini H, Al Rashdi M, Al Sheraiqi S, Al Harmali S, Al Lamki M, Al Sheidi A, Al Zadjali A. Ru‐Catalyzed C(sp
2
)−H Bond Arylation of Benzamides Bearing a Novel 4‐Aminoantipyrine as a Directing Group. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hamad H. Al Mamari
- Department of Chemistry, College of Science Sultan Qaboos University PO Box 36, Al Khoudh 123 Muscat Sultanate of Oman
| | - Diana Al Kiumi
- Department of Chemistry, College of Science Sultan Qaboos University PO Box 36, Al Khoudh 123 Muscat Sultanate of Oman
| | - Tamadher Al Rashdi
- Department of Chemistry, College of Science Sultan Qaboos University PO Box 36, Al Khoudh 123 Muscat Sultanate of Oman
| | - Huda Al Quraini
- Department of Chemistry, College of Science Sultan Qaboos University PO Box 36, Al Khoudh 123 Muscat Sultanate of Oman
| | - Malak Al Rashdi
- Department of Chemistry, College of Science Sultan Qaboos University PO Box 36, Al Khoudh 123 Muscat Sultanate of Oman
| | - Sumayya Al Sheraiqi
- Department of Chemistry, College of Science Sultan Qaboos University PO Box 36, Al Khoudh 123 Muscat Sultanate of Oman
| | - Sara Al Harmali
- Department of Chemistry, College of Science Sultan Qaboos University PO Box 36, Al Khoudh 123 Muscat Sultanate of Oman
| | - Mohammed Al Lamki
- Department of Chemistry, College of Science Sultan Qaboos University PO Box 36, Al Khoudh 123 Muscat Sultanate of Oman
| | - Ahmed Al Sheidi
- Department of Chemistry, College of Science Sultan Qaboos University PO Box 36, Al Khoudh 123 Muscat Sultanate of Oman
| | - Asma Al Zadjali
- Department of Chemistry, College of Science Sultan Qaboos University PO Box 36, Al Khoudh 123 Muscat Sultanate of Oman
| |
Collapse
|
14
|
Cizikovs A, Lukasevics L, Grigorjeva L. Cobalt-catalyzed C–H bond functionalization using traceless directing group. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|