1
|
Wilt IK, Demeritte AR, Kim AT, Wang W, Wuest WM. Leveraging Natural Product-Inspired Antifungals to Investigate the Mechanism of Action of Peniciaculin A. ChemMedChem 2024; 19:e202400500. [PMID: 39236145 DOI: 10.1002/cmdc.202400500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/07/2024]
Abstract
Ubiquinone mimics known as quinone outside inhibitors (QoIs) are one of the most prominent fungicides used to protect crops in the agricultural industry. Due to chemotype similarities with known QoIs, peniciaculin A, a triaryl natural product, was proposed to exhibit similar broad spectrum antifungal activity against phytopathogens. Instability of the tertiary alcohol and phenol motif, however, prompted exploration of the antifungal properties of simplified analogues to probe possible overlap in mechanism of action between the natural product and QoIs. Peniciaculin A inspired analogues mimicking known QoI scaffolds displayed broad spectrum antifungal activity while those containing scaffolds dissimilar to QoIs possessed negligible bioactivity. These activity profiles suggest peniciaculin A is likely acting as a QoI.
Collapse
Affiliation(s)
- Ingrid K Wilt
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta GA, 30322, USA
| | - Adrian R Demeritte
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta GA, 30322, USA
| | - Alexander T Kim
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta GA, 30322, USA
| | - Weiwei Wang
- Corteva Agriscience, 9330 Zionsville Rd., Indianapolis IN, 46268, USA
| | - William M Wuest
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta GA, 30322, USA
| |
Collapse
|
2
|
Wei H, Luo Y, Ren J, Yuan Q, Zhang W. Ni(II)-catalyzed asymmetric alkenylation and arylation of aryl ketones with organoborons via 1,5-metalate shift. Nat Commun 2024; 15:8775. [PMID: 39389975 PMCID: PMC11467321 DOI: 10.1038/s41467-024-53005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
Chiral tertiary alcohols are an important structural motif, however, the general and efficient methodologies for their synthesis are less reported. Herein, we report a Ni(ІІ)-catalyzed asymmetric alkenylation and arylation of aryl ketones with organoborons under air via a 1,5-metalate shift strategy to obtain chiral tertiary allylic alcohols and diaryl alcohols. The reaction demonstrates good functional group tolerance and delivers chiral tertiary alcohols with good to excellent results. Furthermore, this method can be applied to the late-stage modification of drugs and the efficient synthesis of natural products. Notably, the reaction proceeds through an outer-sphere mechanism. The Ni(II) complex functions both as a Lewis acid to activate the ketone and create a chiral environment, and as coordination bridge linking the ketone and the organoboron-derived "ate" complex, facilitating the 1,5-metalate shift without forming a C-Ni bond. This approach contrasts with traditional transition metal-catalyzed nucleophilic addition reactions that involve carbon-metal bond formation.
Collapse
Affiliation(s)
- Haipeng Wei
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| | - Yicong Luo
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| | - Jinbao Ren
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| | - Qianjia Yuan
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China.
| | - Wanbin Zhang
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China.
| |
Collapse
|
3
|
Shoji A, Arai Y, Asakawa R, Saito T, Kuramochi K, Yajima A. Synthesis and structure-activity relationship of violaceoid D, a cytotoxic alkylated phenol isolated from Aspergillus violaceofuscus Gasperini. Biosci Biotechnol Biochem 2023; 87:363-370. [PMID: 36592963 DOI: 10.1093/bbb/zbac212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023]
Abstract
The enantioselective synthesis of violaceoid D, a cytotoxic phenolic compound isolated from the culture broth of Aspergillus violaceofuscus Gasperini, was achieved. The total synthesis involves stereoselective construction of the stereogenic center of violaceoid D via Sharpless asymmetric dihydroxylation, followed by Smiles rearrangement. The absolute configuration of natural violaceoid D was determined to be R from the specific rotation value. Synthesized violaceoid D and its analogs were evaluated for cytotoxicity against two human cancer cell lines, Jurkat and HCT116. Because the enantiomer of violaceoid D showed no cytotoxicity, it is plausible that violaceoid D binds selectively to specific target molecules, such as proteins in the cancer cells.
Collapse
Affiliation(s)
- Atsushi Shoji
- Graduate School of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, Japan
| | - Yuka Arai
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, Japan
| | - Ryuki Asakawa
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, Japan
| | - Tatsuo Saito
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, Japan
| | - Kouji Kuramochi
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, Japan
| | - Arata Yajima
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
4
|
Mushtaq A, Zahoor AF, Bilal M, Hussain SM, Irfan M, Akhtar R, Irfan A, Kotwica-Mojzych K, Mojzych M. Sharpless Asymmetric Dihydroxylation: An Impressive Gadget for the Synthesis of Natural Products: A Review. Molecules 2023; 28:2722. [PMID: 36985698 PMCID: PMC10051988 DOI: 10.3390/molecules28062722] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Sharpless asymmetric dihydroxylation is an important reaction in the enantioselective synthesis of chiral vicinal diols that involves the treatment of alkene with osmium tetroxide along with optically active quinine ligand. Sharpless introduced this methodology after considering the importance of enantioselectivity in the total synthesis of medicinally important compounds. Vicinal diols, produced as a result of this reaction, act as intermediates in the synthesis of different naturally occurring compounds. Hence, Sharpless asymmetric dihydroxylation plays an important role in synthetic organic chemistry due to its undeniable contribution to the synthesis of biologically active organic compounds. This review emphasizes the significance of Sharpless asymmetric dihydroxylation in the total synthesis of various natural products, published since 2020.
Collapse
Affiliation(s)
- Aqsa Mushtaq
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ameer Fawad Zahoor
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Bilal
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
| | - Syed Makhdoom Hussain
- Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Irfan
- Department of Pharmaceutics, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Rabia Akhtar
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
- Department of Chemistry, Superior University, Faisalabad 38000, Pakistan
| | - Ali Irfan
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Katarzyna Kotwica-Mojzych
- Laboratory of Experimental Cytology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3-Go Maja 54, 08-110 Siedlce, Poland
| |
Collapse
|
5
|
Abstract
Covering: January to December 2021This review covers the literature published in 2021 for marine natural products (MNPs), with 736 citations (724 for the period January to December 2021) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1425 in 416 papers for 2021), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of the number of authors, their affiliations, domestic and international collection locations, focus of MNP studies, citation metrics and journal choices is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
6
|
Wilt IK, Demeritte AR, Wang W, Wuest WM. Total Synthesis and Antibacterial Investigations of 1-Hydroxyboivinianin A. ChemMedChem 2022; 17:e202200363. [PMID: 36129386 DOI: 10.1002/cmdc.202200363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/19/2022] [Indexed: 01/14/2023]
Abstract
Synthetic investigations of natural products has been instrumental in the development of novel antibacterial small molecules. 1-hydroxyboivinianin A, a lactone containing phenolic bisabolane isolated from marine sediment, has reported antibacterial activity against the aquatic pathogen Vibrio harveyi. The total synthesis of 1-hydroxyboivinianin A and its enantiomer was completed in a six-step sequence in 42 % overall yield. The synthesis leveraged a key diastereoselective nucleophilic addition with chiral imidazolidinone to establish the benzylic tertiary alcohol and intramolecular Horner-Wadsworth Emmons to furnish the lactone. Both enantiomers were found to have negligible antibacterial activity against a panel of gram-positive and negative bacteria and minimal antifungal activity against phytopathogens. Investigations of a possible in vitro lactone hydrolysis to produce an inactive linear acid led to the discovery of a spontaneous cyclization, suggesting the lactone is resistant to hydrolysis and the lactone is not degrading to produce an inactive species.
Collapse
Affiliation(s)
- Ingrid K Wilt
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Adrian R Demeritte
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Weiwei Wang
- Corteva AgriscienceTM, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| | - William M Wuest
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| |
Collapse
|
7
|
Anh NTN, Miyaji D, Osaki-Oka K, Saito T, Ishihara A, Yajima A. Synthesis and antifungal activity of the proposed structure of a volatile compound isolated from the edible mushroom Hypsizygus marmoreus. JOURNAL OF PESTICIDE SCIENCE 2022; 47:17-21. [PMID: 35414759 PMCID: PMC8931547 DOI: 10.1584/jpestics.d21-061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
We synthesized the proposed structure of an antifungal compound detected in the culture broth of the edible mushroom Hypsizygus marmoreus. Using the Evans aldol and Abiko-Masamune aldol reactions as the key steps, we synthesized all of the stereoisomers of the compound with high stereoselectivity. The GC retention times and the fragmentation patterns in the mass spectra of the synthesized isomers did not match those of the natural product. Therefore, this result may imply that it is necessary to reisolate the natural product and reconsider its structure. All of the synthesized isomers were found to exhibit antifungal activity against the phytopathogenic fungus Alternaria brassicicola. Due to their simple structures, the obtained isomers could be lead compounds for new pesticides.
Collapse
Affiliation(s)
- Nguyen Thi Ngoc Anh
- Graduate School of Agriculture, Tokyo University of Agriculture, 1–1–1 Sakuragaoka, Setagaya-ku, Tokyo 156–8502, Japan
| | - Daisuke Miyaji
- Faculty of Agriculture, Tottori University, 4–101 Koyama-Minami, Tottori 680–8553, Japan
| | - Kumiko Osaki-Oka
- Faculty of Agriculture, Tottori University, 4–101 Koyama-Minami, Tottori 680–8553, Japan
| | - Tatsuo Saito
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, 1–1–1 Sakuragaoka, Setagaya-ku, Tokyo 156–8502, Japan
| | - Atsushi Ishihara
- Faculty of Agriculture, Tottori University, 4–101 Koyama-Minami, Tottori 680–8553, Japan
| | - Arata Yajima
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, 1–1–1 Sakuragaoka, Setagaya-ku, Tokyo 156–8502, Japan
| |
Collapse
|