1
|
Peng G, Wei F, Bai J, Ding H, Yu X, Xiao Q. Metal-free iodosulfonylation of alkynes to access ( E)-β-iodovinyl sulfones in water. Org Biomol Chem 2025. [PMID: 40354146 DOI: 10.1039/d5ob00483g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
With the escalating concerns regarding environmental pollution caused by organic solvents, chemists are increasingly focusing on conducting organic reactions in water, nature's chosen solvent for chemical synthesis. Herein, the development of metal-free iodosulfonylation of alkynes with p-toluenesulfonyl cyanide and NIS for the synthesis of (E)-β-iodovinyl sulfones in water is reported. This reaction gives the desired products in good to excellent yields with high regio- and stereoselectivity by using water as a green solvent at room temperature. This reaction could be readily scaled up, and synthetic application was also studied.
Collapse
Affiliation(s)
- Guiting Peng
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
| | - Fang Wei
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
| | - Jiang Bai
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
| | - Haixin Ding
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
| | - Xin Yu
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
| | - Qiang Xiao
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
| |
Collapse
|
2
|
Huang TS, Chen CL, Tsai MH, Chen YC, Hsu CS. Synthesis of Polysubstituted Vinyl Sulfones by Direct C-S Cross-Coupling. Chemistry 2025; 31:e202403947. [PMID: 39573855 DOI: 10.1002/chem.202403947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Vinyl sulfones are valued for their unique chemical properties and bioactivity, but creating a wide range of different analogs remains a challenge. To address this limitation, we have developed a novel approach that facilitates the synthesis of polysubstituted vinyl sulfones. This method utilizes the dual functionality of NIS as a promoter that enables sulfonation and elimination in the synthesis of vinyl sulfones. We used the broad applicability, efficiency, selectivity, and functional group tolerance of this approach to synthesize more than 70 examples. Additionally, competition experiments have provided insights into the reactivity and selectivity of the transient sulfonyl radical towards various C-C multiple bonds. Herein, we describe using this mild protocol in the late-stage vinyl sulfonation of complex molecules to simplify the synthesis of specific targets and enable the modification of complex natural products and advanced materials.
Collapse
Affiliation(s)
- Tian-Sih Huang
- Department of Chemistry, Fu Jen Catholic University, 510 Zhongzheng Road, Xinzhuang District, New Taipei City, 24205, Taiwan
| | - Chun-Lin Chen
- Department of Chemistry, Fu Jen Catholic University, 510 Zhongzheng Road, Xinzhuang District, New Taipei City, 24205, Taiwan
| | - Ming-Hsuan Tsai
- Department of Chemistry, Fu Jen Catholic University, 510 Zhongzheng Road, Xinzhuang District, New Taipei City, 24205, Taiwan
| | - Yu-Chi Chen
- Department of Chemistry, Fu Jen Catholic University, 510 Zhongzheng Road, Xinzhuang District, New Taipei City, 24205, Taiwan
| | - Che-Sheng Hsu
- Department of Chemistry, Fu Jen Catholic University, 510 Zhongzheng Road, Xinzhuang District, New Taipei City, 24205, Taiwan
| |
Collapse
|
3
|
Xu Y, Zhang S, Huang D, Wu X. Reactions of alkynes with C-S bond formation: recent developments. Org Biomol Chem 2024; 22:6443-6484. [PMID: 39041389 DOI: 10.1039/d4ob00804a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Alkynes are important in organic synthesis. This review mainly focuses on recent advances (2013-2023) on alkynes with C-S bond formation, based on more than 30 types of sulfur reagents. The reactions of alkynes with various sulfur-containing compounds including RSSR (disulfides), RSH (thiols), S8 (elemental sulphur), alkynyl thioethers, RSCN, AgSCF3, K2S, Na2S, dithiane, RSCl, NFSI, RNCS, EtOCS2K, thiocarbamate, RSONH2, thiourea, sulfoxide, RSO2N3, CS2, RSO2NH2, RSO2NHNH2, RSO2Cl, RSO2Oar, RSO2SR', DABCO·(SO2)2, Na2S2O5, K2S2O5, RSO2H, RSO2Na and related compounds are discussed. Diverse mechanisms such as radical, electrophilic/nucleophilic addition, rearrangement, C-C bond cleavage, and CuAAC are discussed. The content is organized by substrates and reactivity patterns. We hope it will help in future research in this area.
Collapse
Affiliation(s)
- Yuemei Xu
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| | - Shujuan Zhang
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| | - Dayun Huang
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| | - Xiangmei Wu
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| |
Collapse
|
4
|
Rani P, Chahal S, Singh R, Sindhu J. Pushing Boundaries: What's Next in Metal-Free C-H Functionalization for Sulfenylation? Top Curr Chem (Cham) 2024; 382:13. [PMID: 38607428 DOI: 10.1007/s41061-024-00460-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/15/2024] [Indexed: 04/13/2024]
Abstract
The synthesis of thioether derivatives has been explored widely due to the potential application of these derivatives in medicinal chemistry, pharmaceutical industry and material chemistry. Within this context, there has been an increasing demand for the environmentally benign construction of C-S bonds via C-H functionalization under metal-free conditions. In the present article, we highlight recent developments in metal-free sulfenylation that have occurred in the past three years. The synthesis of organosulfur compounds via a metal-free approach using a variety of sulfur sources, including thiophenols, disulfides, sulfonyl hydrazides, sulfonyl chlorides, elemental sulfur and sulfinates, is discussed. Non-conventional strategies, which refer to the development of thioether derivatives under visible light and electrochemically mediated conditions, are also discussed. The key advantages of the reviewed methodologies include broad substrate scope and high reaction yields under environmentally benign conditions. This comprehensive review will provide chemists with a synthetic tool that will facilitate further development in this field.
Collapse
Affiliation(s)
- Payal Rani
- Department of Chemistry, College of Basic Sciences & Humanities, Chaudhary Charan Singh Haryana Agricultural University (CCS HAU), Hisar, Haryana, 125004, India
| | - Sandhya Chahal
- Department of Chemistry, College of Basic Sciences & Humanities, Chaudhary Charan Singh Haryana Agricultural University (CCS HAU), Hisar, Haryana, 125004, India
| | - Rajvir Singh
- Department of Chemistry, College of Basic Sciences & Humanities, Chaudhary Charan Singh Haryana Agricultural University (CCS HAU), Hisar, Haryana, 125004, India
| | - Jayant Sindhu
- Department of Chemistry, College of Basic Sciences & Humanities, Chaudhary Charan Singh Haryana Agricultural University (CCS HAU), Hisar, Haryana, 125004, India.
| |
Collapse
|
5
|
Reddy RJ, Kumar JJ, Kumari AH. Recent trends in the synthesis and applications of β-iodovinyl sulfones: a decade of progress. Org Biomol Chem 2024; 22:2492-2509. [PMID: 38446020 DOI: 10.1039/d3ob01980b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Direct vicinal difunctionalization of π-systems has emerged as a powerful platform for constructing multiple bonds in a single synthetic operation using simple chemical feedstocks. Over the past decade, there has been exponential growth in the direct construction of successive C-S and C-I bonds using a wide variety of sulfonyl and iodide reactants through 1,2-iodosulfonylation of alkynes in a regio- and stereo-selective manner. In this review, we mainly focus on the recent developments in the preparation of β-iodovinyl sulfones and their practical applications in organic synthesis. The most promising photoredox and electrochemical transformations for synthesizing β-iodovinyl sulfones are also reviewed. The multifunctional β-iodovinyl sulfones have recently been burgeoning as versatile synthetic precursors due to the combination of vinyl iodide and vinyl sulfone moieties, essential building blocks for diverse synthetic manipulations. We hereby present the chemistry of β-iodovinyl sulfones, which can be classified into numerous sections based on the sulfonyl surrogates, and potential synthetic approaches are systematically outlined.
Collapse
Affiliation(s)
- Raju Jannapu Reddy
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India.
| | - Jangam Jagadesh Kumar
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India.
| | - Arram Haritha Kumari
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India.
| |
Collapse
|
6
|
Tang Y, Tang Y, zhu R, Zheng S, Cheng X, Chen XY. Metal-free synthesis of N-vinyl sulfoximines via DABCO-participated Michael addition of terminal carbonyl alkynes with N-chlorosulfoximines. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Kumar S, Kumar J, Naqvi T, Raheem S, Rizvi MA, Shah BA. Synthesis of (E)‐β‐Iodovinyl Sulfones via Photoredox Catalyzed Difunctionalization of Terminal Alkynes. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sourav Kumar
- IIIM: Council of Scientific & Industrial Research Indian Institute of Integrative Medicine Natural Product & Medicinal Chemistry INDIA
| | - Jaswant Kumar
- IIIM: Council of Scientific & Industrial Research Indian Institute of Integrative Medicine Natural Product & Medicinal Chemistry INDIA
| | - Tahira Naqvi
- Govt College for Women, MA Road, Srinagar Chemistry INDIA
| | | | | | - Bhahwal Ali Shah
- CSIR-Indian Institute of Integrative Medicine CSIR Natural Product Chemistry Microbes Canal Road 180001 Jammu INDIA
| |
Collapse
|
8
|
Samanta SK, Sarkar R, Sengupta U, Das S, Ganguly D, Hasija A, Chopra D, Bera MK. A direct entry to polycyclic quinoxaline derivatives via I 2-DMSO mediated oxidative decarboxylation of α-amino acids and the subsequent Pictet-Spengler cyclization reaction. Org Biomol Chem 2022; 20:4650-4658. [PMID: 35612282 DOI: 10.1039/d2ob00503d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A facile and highly efficient iodine-promoted strategy has been delineated for the synthesis of indolo and pyrrolo[1,2-a]quinoxaline derivatives via an oxidative Pictet-Spengler type amino cyclo-annulation reaction using ∝-amino acids as aldehyde surrogates. The concomitant benzylic oxidation and the compatibility of different starting materials under standard conditions made the current method versatile. The salient features of the protocol such as readily available starting materials, inexpensive promoters, environmental benignity, broad substrate scope, scalability, and good to excellent yield make the method more attractive to practitioners of organic synthesis.
Collapse
Affiliation(s)
- Surya Kanta Samanta
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah 711 103, WB, India.
| | - Rumpa Sarkar
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah 711 103, WB, India.
| | - Utsav Sengupta
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah 711 103, WB, India.
| | - Sayan Das
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research, JIS University, Kolkata, India
| | - Debabani Ganguly
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research, JIS University, Kolkata, India
| | - Avantika Hasija
- Crystallography and Crystal Chemistry Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Deepak Chopra
- Crystallography and Crystal Chemistry Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Mrinal K Bera
- Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah 711 103, WB, India.
| |
Collapse
|
9
|
Liu L, Xiao H, Xiao F, Xie Y, Huang H, Deng G. Synthesis of β-Ketosulfone from Sodium Sulfinate and Aryl Ethyl Ketone/Indanone. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202109050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|