1
|
Fendre D, Lukšič M, Kranjc K. Towards Greener Synthesis of Substituted 3-Aminophthalates Starting from 2 H-Pyran-2-ones via Diels-Alder Reaction of Acetylenedicarboxylates. Molecules 2025; 30:2271. [PMID: 40509158 PMCID: PMC12156201 DOI: 10.3390/molecules30112271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2025] [Revised: 05/19/2025] [Accepted: 05/20/2025] [Indexed: 06/18/2025] Open
Abstract
The aim of this work was to prepare a large set of variously substituted 3-aminophthalates starting from substituted 3-acylamino-2H-pyran-2-ones acting as dienes in Diels-Alder reactions with dialkyl acetylenedicarboxylates having the role of dienophiles. These thermally allowed [4+2] cycloadditions were taking place with normal electron demand due to rather electron-deficient dienophiles and relatively electron-rich dienes; however, they still required quite harsh reaction conditions: heating in closed vessels at 190 °C for up to 17 h was sufficient in most cases (albeit for a few reactions the time needed was up to 58 h) to achieve conversions above 95%. Such conditions, unfortunately, necessitated the use of a larger excess of dienophiles (as undesired polymerization takes place concomitantly); nevertheless, the straightforward isolation procedures enabled access to the target compounds in moderate to high yields (average yield 56%). All products were characterized by standard analytical and spectroscopic methods. With the goal of changing the reaction conditions to be more environmentally friendly, we investigated the effect of various solvents (water, n-butanol, butyl acetate, xylene, para-cymene, n-nonane, etc.) and the temperature applied (130-190 °C) on the conversion. We found that higher temperatures are necessary in most cases (except for the most reactive 2H-pyran-2-ones) regardless of the solvent used. Relative reactivity was determined for both sets of reactants and the experimentally obtained data show good agreement with the computational results.
Collapse
Affiliation(s)
| | | | - Krištof Kranjc
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia; (D.F.); (M.L.)
| |
Collapse
|
2
|
Lin F, Tang R, Liu S, Tan Y. Recent advances in the synthetic applications of nitrosoarene chemistry. Org Biomol Chem 2025; 23:1253-1291. [PMID: 39692149 DOI: 10.1039/d4ob01654h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Nitroso groups are widely present in biologically active compounds in medicinal chemistry, and nitroso compounds serve as important building blocks in organic chemistry and materials science. Nitrosoarenes, in particular, showcase remarkable versatility, functioning as both electrophilic and nucleophilic reagents in a broad spectrum of organic reactions, thereby holding significant relevance in organic chemistry. This review aims to provide a comprehensive overview of the latest advancements in nitrosoarene reactions spanning a decade. Special attention is given to the synthesis of products derived from nitrosoarenes and the conditions that promote these reactions, as well as the type of catalysts. The exploration covers various facets of nitrosoarene chemistry, including cyclization, reactions involving attacks at the oxygen or nitrogen terminus, dimerization, rearrangement, coordination, and other significant reactions. By delving into these diverse reaction pathways and mechanisms, this review aspires to serve as a valuable resource for researchers seeking to deepen their understanding of nitrosoarene chemistry and its applications in both fundamental and applied scientific research.
Collapse
Affiliation(s)
- Feng Lin
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| | - Rongzhi Tang
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Sheng Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
- The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong, China
| | - Yu Tan
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| |
Collapse
|
3
|
Yan W, Ma X, Li Q, Pang Z, Yang X, Chen Y, Yang Z. Aluminum-catalyzed anti-Markovnikov hydroamination of aromatic alkenes with aromatic amines. Org Biomol Chem 2025; 23:1347-1353. [PMID: 39713972 DOI: 10.1039/d4ob01820f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Herein, we report a novel Al compound supported by a NacNac ligand that facilitates the anti-Markovnikov hydroamination of aromatic alkenes and primary amines. This represents the first instance of an aluminum-catalyzed intermolecular hydroamination of alkenes, successfully synthesizing a variety of aromatic imine derivatives. The proposed mechanism suggests that the coordination activation of tBuOK by ether solvents is crucial, allowing the tBuO- anion to coordinate with the catalyst's Al center, thus forming a key intermediate.
Collapse
Affiliation(s)
- Wenliang Yan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
| | - Xiaoli Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
| | - Qifeng Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
| | - Ziyuan Pang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
| | - Xiaobo Yang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
| | - Yiwen Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
| | - Zhi Yang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
| |
Collapse
|
4
|
Fulton BB, Hartzell AJ, Dias HVR, Lovely CJ. Room Temperature Diels-Alder Reactions of 4-Vinylimidazoles. Molecules 2024; 29:1902. [PMID: 38675720 PMCID: PMC11053432 DOI: 10.3390/molecules29081902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/30/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
In the course of studying Diels-Alder reactions of 4-vinylimidazoles with N-phenylmaleimide, it was discovered that they engage in cycloaddition at room temperature to give high yields of the initial cycloadduct as a single stereoisomer. In certain cases, the product precipitated out of the reaction mixture and could be isolated by simple filtration, thereby avoiding issues with aromatization observed during chromatographic purification. Given these results, intramolecular variants using doubly activated dienophiles were also investigated at room temperature. Amides underwent cycloaddition at room temperature in modest yields, but the initial adducts were not isolable with Nimid-benzyl-protected systems. Attempts to extend these results to the corresponding esters and hydroxamate were less successful with these substrates only undergoing cycloaddition at elevated temperatures in lower yields. Density functional theory calculations were performed to evaluate the putative transition states for both the inter- and intramolecular variants to rationalize experimental observations.
Collapse
Affiliation(s)
| | | | | | - Carl J. Lovely
- Department of Chemistry and Biochemistry, University of Texas Arlington, Arlington, TX 76019, USA
| |
Collapse
|
5
|
Naulin E, Lombard M, Gandon V, Retailleau P, Elslande EV, Neuville L, Masson G. Enantioselective and Regiodivergent Synthesis of Dihydro-1,2-oxazines from Triene-Carbamates via Chiral Phosphoric Acid-Catalysis. J Am Chem Soc 2023; 145:26504-26515. [PMID: 38011838 DOI: 10.1021/jacs.3c12015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Conjugated trienes are fascinating building blocks for the rapid construction of complex polycyclic compounds. However, limited success has been achieved due to the challenging regioselectivity control. Herein, we report an enantio- and diastereoselective process allowing to regioselectively control the functionalization of NH-triene-carbamates. Synthesis of chiral cis-3,6-dihydro-2H-1,2-oxazines is achieved by a chiral phosphoric acid catalyzed Nitroso-Diels-Alder cycloaddition involving [(1E,3E,5E)-hexa-1,3,5-trien-1-yl]carbamates. Moreover, modular access to three different regioisomers with excellent diastereoselectivities and high to excellent enantioselectivities is obtained by a careful choice of the reaction conditions. A computational study reveals that the regioselectivity is influenced by the steric demand of the substituents at the 6-position of the triene, as well as noncovalent interactions between the two cycloaddition partners. Utility of each regioisomeric cycloadduct is highlighted by a variety of synthetic transformations.
Collapse
Affiliation(s)
- Emma Naulin
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette Cedex 91198, France
| | - Marine Lombard
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette Cedex 91198, France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, 17 Avenue des Sciences, Orsay 91400, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette Cedex 91198, France
| | - Elsa Van Elslande
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette Cedex 91198, France
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette Cedex 91198, France
- HitCat, Seqens-CNRS Joint Laboratory, Seqens'Lab, 8 Rue de Rouen, Porcheville 78440, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette Cedex 91198, France
- HitCat, Seqens-CNRS Joint Laboratory, Seqens'Lab, 8 Rue de Rouen, Porcheville 78440, France
| |
Collapse
|
6
|
Zhu JX, Pi F, Sun T, Huang WY, Gao L, Chen ZC, Du W, Chen YC. Asymmetric 2,4-Dienylation/[4 + 2] Annulation Cascade to Construct Fused Frameworks via Auto-Tandem Palladium Catalysis. Org Lett 2023; 25:3682-3686. [PMID: 37191623 DOI: 10.1021/acs.orglett.3c01084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A palladium catalyzed tandem reaction between ortho-functionalized aryl enones and 2,4-dienyl carbonates has been presented, proceeding through sequential 2,4-dienylation/Michael addition/π-σ-π isomerization/allylic alkylation. A broad array of enantioenriched architectures having fused and spirocyclic frameworks are constructed in moderate to excellent yields and stereoselectivity. Notably, the intrinsic intramolecular Diels-Alder reaction pattern of the dienylated intermediates is well reversed via Pd(0)-π-Lewis base catalysis.
Collapse
Affiliation(s)
- Jian-Xiang Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fu Pi
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Teng Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wen-Yu Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhi-Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| |
Collapse
|
7
|
Ma W, Montinho‐Inacio E, Iorga BI, Retailleau P, Moreau X, Neuville L, Masson G. Chiral Phosphoric Acid‐Catalyzed Enantioselective Formal [4+2] Cycloaddition Between Dienecarbamates and 2‐Benzothioazolimines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Wei‐Yang Ma
- Institut de Chimie des Substances Naturelles CNRS UPR 2301 Université Paris-Saclay 1, avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Emeric Montinho‐Inacio
- Institut de Chimie des Substances Naturelles CNRS UPR 2301 Université Paris-Saclay 1, avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Bogdan I. Iorga
- Institut de Chimie des Substances Naturelles CNRS UPR 2301 Université Paris-Saclay 1, avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles CNRS UPR 2301 Université Paris-Saclay 1, avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Xavier Moreau
- Institut Lavoisier de Versailles (ILV) UMR CNRS 8180 Université Versailles-St-Quentin-en-Yvelines, Université Paris-Saclay 45 avenue des États-Unis, Bâtiment Lavoisier 78035 Versailles Cedex France
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles CNRS UPR 2301 Université Paris-Saclay 1, avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
- Labcom HITCAT joint lab CNRS-SEQENS ZI de Limay 2 8 rue de Rouen 78440 Porcheville France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles CNRS UPR 2301 Université Paris-Saclay 1, avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
- Labcom HITCAT joint lab CNRS-SEQENS ZI de Limay 2 8 rue de Rouen 78440 Porcheville France
| |
Collapse
|