1
|
Full F, Artigas A, Wiegand K, Volland D, Szkodzińska K, Coquerel Y, Nowak-Król A. Controllable 1,4-Palladium Aryl to Aryl Migration in Fused Systems─Application to the Synthesis of Azaborole Multihelicenes. J Am Chem Soc 2024; 146:29245-29254. [PMID: 39392613 DOI: 10.1021/jacs.4c12562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Herein, we report the first 1,4-Pd aryl to aryl migration/Miyaura borylation tandem reaction in fused systems. The Pd shift occurred in the bay region of the dibenzo[g,p]chrysene building blocks, giving rise to a thermodynamically controlled mixture of 1,8- and 1,9-borylated compounds that allowed the preparation of regioisomeric azaborole multihelicenes from the same starting material. The outcome of this synthesis can be controlled by the choice of reaction conditions, allowing the migration process to be turned off in the absence of an acetate additive and the target multiheterohelicenes to be prepared in a regioselective manner. The target compounds show bright green fluorescence in dichloromethane with emission quantum yields (Φ) of up to 0.29, |glum| values up to 2.7 × 10-3, and green or green-yellow emission in the solid state, reaching Φ of 0.22. Single crystal X-ray diffraction analyses gave insight into their molecular structures and the packing arrangement. Evaluation of aromaticity in these multihelicenes revealed a nonaromatic character of the 2H-1,2-azaborole constituent rings.
Collapse
Affiliation(s)
- Felix Full
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Albert Artigas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona (UdG), Facultat de Ciències, C/ Maria Aurèlia Capmany, 69, Girona, Catalunya 17003, Spain
| | - Kevin Wiegand
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Daniel Volland
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Klaudia Szkodzińska
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Yoann Coquerel
- Aix Marseille Univ, CNRS, Centrale Med, ISM2, Marseille 13397, France
| | - Agnieszka Nowak-Król
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| |
Collapse
|
2
|
Makino K, Fukuda R, Sueki S, Anada M. Total Synthesis of Alanense A through an Intramolecular Friedel-Crafts Alkylation. J Org Chem 2024; 89:2050-2054. [PMID: 38241043 DOI: 10.1021/acs.joc.3c02481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The first total synthesis of cadinane sesquiterpenoid alanense A, in which an intramolecular dehydrative Friedel-Crafts alkylation of 2,5-diaryl-2-pentanol is incorporated as a key step, has been achieved. The combinatorial use of p-TsOH·H2O as a catalyst and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as a solvent provides 1,1-disubstituted tetrahydronaphthalene in 97% yield. It was also found that the combination of p-TsOH and HFIP is effective for the removal of phenolic MOM ether.
Collapse
Affiliation(s)
- Kosho Makino
- Faculty of Pharmacy, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
- Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan
| | - Rio Fukuda
- Faculty of Pharmacy, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
| | - Shunsuke Sueki
- Faculty of Pharmacy, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
- Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan
| | - Masahiro Anada
- Faculty of Pharmacy, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
- Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan
| |
Collapse
|
3
|
Takeo Y, Hirano J, Fukui N, Shinokubo H. Effect of Internal Substituents on the Properties of Dibenzo[ g, p]chrysene. Org Lett 2023; 25:8484-8488. [PMID: 37982582 DOI: 10.1021/acs.orglett.3c03428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
We investigated the chemical and physical properties of internally functionalized dibenzo[g,p]chrysene (DBC) derivatives. These molecules exhibit chiral double-helicene-like structures that are configurationally stable at ambient temperatures. The internal substituents control the conformational change in the excited state, thereby modulating the emission intensity. Notably, the DBC derivative with a methylenedioxy unit undergoes aromatization through elimination of the internal substituent upon photoexcitation, resulting in the formation of DBC.
Collapse
Affiliation(s)
- Yoshihiro Takeo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Junichiro Hirano
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
4
|
Imai T, Akasaka R, Yoshida N, Amaya T, Iwasawa T. Electrochemical and spectroscopic properties of twisted dibenzo[ g, p]chrysene derivatives. Beilstein J Org Chem 2022; 18:963-971. [PMID: 35965854 PMCID: PMC9359188 DOI: 10.3762/bjoc.18.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022] Open
Abstract
Dibenzo[g,p]chrysene (DBC), which consists of a twisted naphthalene core with four fused benzene rings, is a promising framework for organic electronic materials. Therefore, the research for structure–property relationships is important for the design of DBC-based materials. Here, the electrochemical and spectroscopic properties of DBC derivatives were investigated, and the effects of substituents and torsion of the naphthalene moiety were examined based on density functional theory (DFT) calculations. All the substituted DBC derivatives showed higher oxidation potentials than that for DBC-H, even for compounds that contained an electron-donating group such as DBC-Me and DBC-SMe. DFT calculations clearly indicate that these higher oxidation potentials are due to the ineffective conjugation of the MeO group, which is oriented perpendicular to the benzene ring because of the steric repulsion of substituents on both sides. More specifically, the inductive effect of the MeO group is dominant rather than the mesomeric effect when the substituent is located at both sides of the MeO group. Concerning the torsion of the naphthalene moiety, the twisting results in a slight increase in the HOMO and a slight lowering of the LUMO. The twisting effect is much smaller than the conjugation effect of the MeO group. Absorption spectra of all the substituted DBC derivatives also showed a red-shift as compared to that for DBC-H. Concerning the luminescence, a strong photoluminescence was observed for DBC-H and DBC-Si.
Collapse
Affiliation(s)
- Tomoya Imai
- Department of Information and Basic Science, Graduate School of Science, Nagoya City University, 1, Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8501, Japan
| | - Ryuhei Akasaka
- Department of Materials Chemistry, Ryukoku University, Seta, Otsu, Shiga, 520-2194, Japan
| | - Naruhiro Yoshida
- Department of Materials Chemistry, Ryukoku University, Seta, Otsu, Shiga, 520-2194, Japan
| | - Toru Amaya
- Department of Information and Basic Science, Graduate School of Science, Nagoya City University, 1, Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8501, Japan
| | - Tetsuo Iwasawa
- Department of Materials Chemistry, Ryukoku University, Seta, Otsu, Shiga, 520-2194, Japan
| |
Collapse
|