1
|
Liu GL, Su YC, Chuang WH, Ko BT. Synthesis and Characterization of Heterodinuclear Indium(III)/Sodium(I) Complexes Containing Benzotriazole-Derived Phenolate Ligands: Effective Catalysts for Ring-Opening Copolymerization of Carbon Dioxide with Epoxides. Inorg Chem 2024; 63:19582-19592. [PMID: 39387645 DOI: 10.1021/acs.inorgchem.4c02536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
This study reported for the first time the facile synthesis of a series of novel structurally well-characterized heterodinuclear indium(III)/sodium(I) dihalide complexes containing benzotriazole-based bis(amino-phenolate) derivatives. All heterobimetallic In(III)/Na(I) complexes were found to be active single-component catalysts for the copolymerization of carbon dioxide (CO2) with cyclohexene oxide (CHO). Noteworthily, In/Na chloro complex 1 has been shown to give high copolymerization selectivity possessing >99% carbonate repeated units for CO2-derived poly(cyclohexene carbonate) production and displayed a turnover number of >1400 under the optimized conditions. Apart from the CO2/CHO copolymerization, the same complex was capable of mediating the CO2-copolymerization of 4-vinyl-1,2-cyclohexene oxide or cyclopentene oxide to deliver the related CO2-based polycarbonates. To the best of our knowledge, complex 1 in this work appears to be the first example of In/Na halide complex-promoted CO2/epoxide copolymerization that enabled the generation of aliphatic polycarbonates with good productivity and high product selectivity.
Collapse
Affiliation(s)
- Guan-Lin Liu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Chia Su
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Wei-Hsin Chuang
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Bao-Tsan Ko
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
2
|
Nifant’ev IE, Ivchenko PV. Synthesis, Structure, and Actual Applications of Double Metal Cyanide Catalysts. Int J Mol Sci 2024; 25:10695. [PMID: 39409025 PMCID: PMC11477396 DOI: 10.3390/ijms251910695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Double metal cyanide (DMC) complexes represent a unique family of materials with an open framework structure. The main current application of these complexes in chemical industry is their use as catalysts (DMCCs) of the ring-opening polymerization of propylene oxide (PO), yielding branched polyols, highly demanded in production of polyurethanes and surfactants. The actual problem of chemical fixing carbon dioxide from the atmosphere gave new impetus to the development of DMCCs, which turned out to be effective in oxirane/CO2 copolymerization. In recent years, new types and formulations of DMCCs were created, so that greater understanding of the reaction mechanisms was achieved and new fields of catalytic applications were found. In the present review, we summarized background and actual information about the synthesis, structure, and mechanisms of the action of DMCCs, as well as their application in the development of new materials and fine chemicals.
Collapse
Affiliation(s)
- Ilya E. Nifant’ev
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Pr., 119991 Moscow, Russia;
| | | |
Collapse
|
3
|
Bagherzadeh M, Chegeni M, Bayrami A, Amini M. Superior and efficient performance of cost-effective MIP-202 catalyst over UiO-66-(CO 2H) 2 in epoxide ring opening reactions. Sci Rep 2024; 14:17730. [PMID: 39085363 PMCID: PMC11291889 DOI: 10.1038/s41598-024-68497-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
This study explored the catalytic performance of two robust zirconium-based metal-organic frameworks (MOFs), MIP-202(Zr) and UiO-66-(CO2H)2 in the ring-opening of epoxides using alcohols and amines as nucleophilic reagents. The MOFs were characterized by techniques such as FT-IR, PXRD, FE-SEM, and EDX. Through systematic optimization of key parameters (catalyst amount, time, temperature, solvent), MIP-202(Zr) achieved 99% styrene oxide conversion in 25 min with methanol at room temperature using 5 mg catalyst. In contrast, UiO-66-(CO2H)2 required drastically harsher conditions of 120 min, 60 °C, and four times the catalyst loading to reach 98% conversion. A similar trend was observed for ring-opening with aniline -MIP-202(Zr) gave 93% conversion in one hour at room temperature, while UiO-66-(CO2H)2 needed two hours at 60 °C for 95% conversion. The superior performance of MIP-202(Zr) likely stems from cooperative Brønsted/Lewis acid sites and higher proton conductivity enabling more efficient epoxide activation. Remarkably, MIP-202(Zr) maintained consistent activity over five recycles in the ring-opening of styrene oxide by methanol and over three recycles in the ring-opening of styrene oxide by aniline. Testing various epoxide substrates and nucleophiles revealed trends in reactivity governed by electronic and steric effects. The results provide useful insights into tuning Zr-MOF-based catalysts and highlight the promise of the cost-effective and sustainable MIP-202(Zr) for diverse epoxide ring-opening reactions on an industrial scale.
Collapse
Affiliation(s)
- Mojtaba Bagherzadeh
- Chemistry Department, Sharif University of Technology, PO Box, Tehran, 11155-3615, Iran.
| | - Mohsen Chegeni
- Chemistry Department, Sharif University of Technology, PO Box, Tehran, 11155-3615, Iran
| | - Arshad Bayrami
- Department of Chemistry, Research Center for Development of Advanced Technologies, Tehran, Iran
| | - Mojtaba Amini
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
4
|
Del Angel-Gómez EJ, Reséndiz-Hernández O, Vega-Moreno J, Morelos-Santos O, Lemus-Santana A, Portales-Martínez B. Unraveling the role of internal-external metal substitution in Zn 3[Co(CN 6)] 2 for the styrene oxide-CO 2 cycloaddition reaction. Dalton Trans 2024; 53:6087-6099. [PMID: 38481378 DOI: 10.1039/d3dt04261h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
We investigated the influence of the structural and textural properties along with the chemical environment of pure Zn3[Co(CN)6]2 in comparison with the modified phases on the catalytic performance in the cycloaddition reaction between styrene oxide and CO2. We relate these to the proposed reaction pathways and mechanisms. The natural cubic phase (ZnCoCn) was dehydrated to obtain the rhombohedral phase (ZnCoRn), while the stabilized cubic phase (ZnCoCs) was synthesized by substituting external zinc atoms with cadmium atoms. The rhombohedral stabilized phase (ZnCoRs) was achieved by the internal cobalt change with iron. All the materials were extensively characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray photoelectron spectroscopy (XPS), and N2 adsorption. The catalytic behavior of the four phases was tested. The crystalline structure of each phase was obtained, and by XPS, it was demonstrated that the chemical environments of all elements conforming to the rhombohedral stabilized phase are different from those of all other materials owing to the exchange of internal metals. The bulk textural properties were similar; only the ZnCoRs presented more micropore area but did not exceed the total surface area of the other materials. The product distribution and yield at reaction times of 2 h and 6 h were closer to those of the cubic phases. The natural rhombohedral phase exhibits the best performance. The tetrabutylammonium bromide (TBAB) and rhombohedral stabilized phase work together to yield a bigger copolymer quantity at the expense of the styrene carbonate (StCO3) production. From the proposed mechanism, the TBAB cation (TBA+) has a "protection" function that drives the closing of the StCO3 ring; however, the charge distribution anisotropy in the four nitrogen atoms generated by Co replacement in ZnCoRs could hold TBA+ as the reaction time progressed, causing an unavailability that triggered the copolymerization propagation step.
Collapse
Affiliation(s)
- Erik J Del Angel-Gómez
- Instituto Politécnico Nacional, CICATA Legaria, Col. Irrigación, México City, 11500, Mexico.
| | - Omar Reséndiz-Hernández
- Instituto Politécnico Nacional, CICATA Legaria, Col. Irrigación, México City, 11500, Mexico.
| | - Jesús Vega-Moreno
- CONAHCYT- Instituto Politécnico Nacional, CICATA Legaria, Col. Irrigación, México City, 11500, Mexico
| | - Oscar Morelos-Santos
- Tecnológico Nacional de México/Instituto Tecnológico de Ciudad Madero, Ciencias Básicas, Col. Los Mangos, Ciudad Madero, Tamaulipas, 89440, Mexico
| | - Adela Lemus-Santana
- Instituto Politécnico Nacional, CICATA Legaria, Col. Irrigación, México City, 11500, Mexico.
| | | |
Collapse
|
5
|
Nagae H, Matsushiro S, Okuda J, Mashima K. Cationic tetranuclear macrocyclic CaCo 3 complexes as highly active catalysts for alternating copolymerization of propylene oxide and carbon dioxide. Chem Sci 2023; 14:8262-8268. [PMID: 37564411 PMCID: PMC10411860 DOI: 10.1039/d3sc00974b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023] Open
Abstract
We found that a cationic hetero tetranuclear complex including a calcium and three cobalts exhibited high catalytic activity toward alternating copolymerization of propylene oxide (PO) and carbon dioxide (CO2). The tertiary anilinium salt [PhNMe2H][B(C6F5)4] was the best additive to generate the cationic species while maintaining polymer selectivity and carbonate linkage, even under 1.0 MPa CO2. Density functional theory calculations clarified that the reaction pathway mediated by the cationic complex is more favorable than that mediated by the neutral complex by 1.0 kcal mol-1. We further found that the flexible ligand exchange between Ca and Co ions is important for the alternating copolymerization to proceed smoothly.
Collapse
Affiliation(s)
- Haruki Nagae
- Department of Chemistry, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| | - Saki Matsushiro
- Department of Chemistry, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University Landoltweg 1 D-52062 Aachen Germany
| | - Kazushi Mashima
- Department of Chemistry, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| |
Collapse
|
6
|
Abstract
Multimetallic catalysis is a powerful strategy to access complex molecular scaffolds efficiently from easily available starting materials. Numerous reports in the literature have demonstrated the effectiveness of this approach, particularly for capitalizing on enantioselective transformations. Interestingly, gold joined the race of transition metals very late making its use in multimetallic catalysis unthinkable. Recent literature revealed that there is an urgent need to develop gold-based multicatalytic systems based on the combination of gold with other metals for enabling enantioselective transformations that are not possible to capitalize with the use of a single catalyst alone. This review article highlights the progress made in the field of enantioselective gold-based bimetallic catalysis highlighting the power of multicatalysis for accessing new reactivities and selectivities which are beyond the reach of individual catalysts.
Collapse
Affiliation(s)
- Shivhar B Ambegave
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| | - Tushar R More
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| |
Collapse
|
7
|
Jung HJ, Nyamayaro K, Baalbaki HA, Goonesinghe C, Mehrkhodavandi P. Cooperative Initiation in a Dinuclear Indium Complex for CO 2 Epoxide Copolymerization. Inorg Chem 2023; 62:1968-1977. [PMID: 36688644 DOI: 10.1021/acs.inorgchem.2c03192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Dinuclear indium complexes have been synthesized and characterized. These include neutral and cationic indium complexes supported by a Schiff base ligand bearing a binaphthol linker. The new compounds were investigated for alternating copolymerization of CO2 and cyclohexene oxide. In particular, the neutral indium chloride complex (±)-[(ONapNiN)InCl2]2 (4) showed high conversion of cyclohexene oxide and selectivity for poly(cyclohexene carbonate) formation without cocatalysts at 80 °C under various CO2 pressures (2-30 bar). Importantly, the reactivity of the dinuclear indium chloride complex 4 is drastically different from that of the mononuclear indium chloride complex (±)-(NNiOtBu)InCl2 (5), suggesting a cooperative initiation mechanism involving the two indium centers in 4.
Collapse
Affiliation(s)
- Hyuk-Joon Jung
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| | - Kudzanai Nyamayaro
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| | - Hassan A Baalbaki
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| | - Chatura Goonesinghe
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| | - Parisa Mehrkhodavandi
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, British Columbia, Canada
| |
Collapse
|
8
|
Said A, Liu C, Gao C, Wang D, Niu H, Liu Y, Wang G, Tung CH, Wang Y. Lead-Decorated Titanium Oxide Compound with a High Performance in Catalytic CO 2 Insertion to Epoxides. Inorg Chem 2023; 62:1901-1910. [PMID: 36184952 DOI: 10.1021/acs.inorgchem.2c01315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The CO2 cycloaddition to epoxides is an efficient method for CO2 capture and storage, important not only for reducing greenhouse gas emission but also for producing cyclic carbonates, which are valuable industrial materials. In this study, we report a novel high-nuclearity titanium oxide cluster (TOC) inlayed with main-group element Pb2+, H2Ti16Pb9O24(SA)18(DMF)10(OH2)2 (denoted as 1; SA = salicylate; DMF = N,N-dimethylformamide), which has the property of visible-light absorption and has shown high catalytic activities for cycloadditions of CO2 under visible-light irradiation. The cluster was synthesized in a high yield in a facial solvothermal process. Its structure and electronic structure were characterized by single-crystal X-ray diffraction, density functional theory calculations, and complementary techniques. The cycloaddition reactions were performed under solvent-free conditions. While the catalytic activity due to the Lewis acidity was moderate, visible-light irradiation further folded the reaction rates. The turnover number reached 3400 with a turnover frequency of 120 h-1. Mechanism studies indicated a synergistic effect of the Lewis acidity and photogenerated charge carriers. The performance of 1 in reversible I2 uptake was also investigated. This study demonstrates the high potential of heterometal-decorated TOCs in the cost-effective and efficient CO2 cycloaddition reaction under mild conditions.
Collapse
Affiliation(s)
- Amir Said
- Key Laboratory for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Caiyun Liu
- Key Laboratory for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chang Gao
- Key Laboratory for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Dexin Wang
- Key Laboratory for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Huihui Niu
- Key Laboratory for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yanshu Liu
- Key Laboratory for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Chen-Ho Tung
- Key Laboratory for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yifeng Wang
- Key Laboratory for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
9
|
Recent progress of catalysts for synthesis of cyclic carbonates from CO2 and epoxides. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Mbabazi R, Wendt OF, Allan Nyanzi S, Naziriwo B, Tebandeke E. Advances in carbon dioxide and propylene oxide copolymerization to form poly(propylene carbonate) over heterogeneous catalysts. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
11
|
Yang Z, Shen C, Dong K. Hydroxyl group‐enabled highly efficient ligand for Pd‐catalyzed telomerization of 1,3‐butadiene with
CO
2
. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhengyi Yang
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Chaoren Shen
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Kaiwu Dong
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| |
Collapse
|
12
|
Tsai HJ, Su YC, Liu GL, Ko BT. Dinuclear Nickel and Cobalt Complexes Containing Biocompatible Carboxylate Derivatives as Effective Catalysts for Coupling of Carbon Dioxide with Epoxides: Synthesis, Characterization, and Catalysis. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hsin-Jung Tsai
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Chia Su
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Guan-Lin Liu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Bao-Tsan Ko
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
13
|
Yang Y, Lee JD, Seo YH, Chae JH, Bang S, Cheong YJ, Lee BY, Lee IH, Son SU, Jang HY. Surface activated zinc-glutarate for the copolymerization of CO 2 and epoxides. Dalton Trans 2022; 51:16620-16627. [DOI: 10.1039/d2dt03007a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A sustainable CO2 polymerization using surface activated zinc glutarate catalysts produces industrially useful polymers with good catalytic activity.
Collapse
Affiliation(s)
- Yongmoon Yang
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
| | - Jong Doo Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Yeong Hyun Seo
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Ju-Hyung Chae
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
| | - Sohee Bang
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Yeon-Joo Cheong
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
| | - Bun Yeoul Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - In-Hwan Lee
- Department of Chemistry, Ajou University, Suwon 16499, Korea
| | - Seung Uk Son
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Hye-Young Jang
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
| |
Collapse
|
14
|
Milocco F, Chiarioni G, Pescarmona PP. Heterogeneous catalysts for the conversion of CO2 into cyclic and polymeric carbonates. ADVANCES IN CATALYSIS 2022. [DOI: 10.1016/bs.acat.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|