1
|
Liu S, Zhou J, Yu L, Liu Y, Huang Y, Ouyang Y, Liu GK, Xu XH, Shibata N. Nitrogen-Based Organofluorine Functional Molecules: Synthesis and Applications. Chem Rev 2025; 125:4603-4764. [PMID: 40261821 DOI: 10.1021/acs.chemrev.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Fluorine and nitrogen form a successful partnership in organic synthesis, medicinal chemistry, and material sciences. Although fluorine-nitrogen chemistry has a long and rich history, this field has received increasing interest and made remarkable progress over the past two decades, driven by recent advancements in transition metal and organocatalysis and photochemistry. This review, emphasizing contributions from 2015 to 2023, aims to update the state of the art of the synthesis and applications of nitrogen-based organofluorine functional molecules in organic synthesis and medicinal chemistry. In dedicated sections, we first focus on fluorine-containing reagents organized according to the type of fluorine-containing groups attached to nitrogen, including N-F, N-RF, N-SRF, and N-ORF. This review also covers nitrogen-linked fluorine-containing building blocks, catalysts, pharmaceuticals, and agrochemicals, underlining these components' broad applicability and growing importance in modern chemistry.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Jun Zhou
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lu Yu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Yingle Liu
- School of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan 643000, China
| | - Yangen Huang
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yao Ouyang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Guo-Kai Liu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xiu-Hua Xu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
2
|
Pradhan C, Khandelwal D, Punji B. Regioselective Difluoroalkylation of 2-Pyridones with Fluoroalkyl Bromides Enabled by a Nickel(II) Catalyst. Chem Asian J 2025:e202401870. [PMID: 39786319 DOI: 10.1002/asia.202401870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
Regioselective C-H difluoroalkylation of diverse 2-pyridones with ethyl bromodifluoroacetates and bromodifluoroacetamides is accomplished by using a (dppf)NiCl2 catalyst under mild conditions. This efficient protocol could deliver a variety of C-3 difluoroalkylated pyridones with the tolerance of a range of highly susceptible functionalities, such as -Cl, -Br, -I, -COMe, -CN, -NMe2 and -NO2, including heteroarenes like pyridinyl, furanyl, thiophenyl and carbazolyl moieties. A preliminary mechanistic study suggests the radical pathway for the reaction involving fluoroalkyl radical intermediate.
Collapse
Affiliation(s)
- Chandini Pradhan
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR - National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, . India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Disha Khandelwal
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR - National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, . India
- K J Somaiya College of Science and Commerce, Vidya Vihar, Mumbai, 400 077, India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR - National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, . India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
3
|
Xiao Y, Zhou H, Shi P, Zhao X, Liu H, Li X. Clickable tryptophan modification for late-stage diversification of native peptides. SCIENCE ADVANCES 2024; 10:eadp9958. [PMID: 38985871 PMCID: PMC11235173 DOI: 10.1126/sciadv.adp9958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
As the least abundant residue in proteins, tryptophan widely exists in peptide drugs and bioactive natural products and contributes to drug-target interactions in multiple ways. We report here a clickable tryptophan modification for late-stage diversification of native peptides, via catalyst-free C2-sulfenylation with 8-quinoline thiosulfonate reagents in trifluoroacetic acid (TFA). A wide range of groups including trifluoromethylthio (SCF3), difluoromethylthio (SCF2H), (ethoxycarbonyl)difluoromethylthio (SCF2CO2Et), alkylthio, and arylthio were readily incorporated. The rapid reaction kinetics of Trp modification and full tolerance with other 19 proteinogenic amino acids, as well as the super dissolving capability of TFA, render this method suitable for all kinds of Trp-containing peptides without limitations from sequences, hydrophobicity, and aggregation propensity. The late-stage modification of 15 therapeutic peptides (1.0 to 7.6 kilodaltons) and the improved bioactivity and serum stability of SCF3- and SCF2H-modified melittin analogs illustrated the effectiveness of this method and its potential in pharmacokinetic property improvement.
Collapse
Affiliation(s)
- Yisa Xiao
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Haiyan Zhou
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong Province 515063, P. R. China
| | - Pengfei Shi
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xueqian Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, P. R. China
| | - Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| |
Collapse
|
4
|
Zheng L, Qiu X, Xiao Z, Ma X, Gao T, Zhou X, Wang Y, Guo Y, Chen QY, Liu C. Deoxygenation of ClSO 2CF 2COOMe with Triphenylphosphine for the Metal-Free Direct Electrophilic Difluoroalkylthiolation of Various Heterocycles. J Org Chem 2023. [PMID: 37134234 DOI: 10.1021/acs.joc.3c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A direct electrophilic difluoroalkylthiolation reaction of indole derivatives and other electron-rich heterocycles using methyl 2,2-difluoro-2-(chlorsulfonyl)acetate (ClSO2CF2COOMe) derived from Chen's reagent (FSO2CF2COOMe) is described. The ester group in the product can be further utilized in subsequent versatile transformations. The reactions provide good yields of the corresponding difluoroalkylthiolation products and exhibit high functional group compatibility. It is expected to serve as an alternative and practical protocol for difluoroalkylthiolation of various heterocycles.
Collapse
Affiliation(s)
- Liping Zheng
- School of Chemical Engineering and Food Science, Zhengzhou University of Technology, 18 Yingcai Street, Zhengzhou 450044, China
| | - Xin Qiu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Zhiwei Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiaoyu Ma
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Tianzeng Gao
- Henan Ground Biological Science & Technology Co., Ltd., 3 Tanxiang Road, Zhengzhou 450001, China
| | - Xiumiao Zhou
- School of Chemical Engineering and Food Science, Zhengzhou University of Technology, 18 Yingcai Street, Zhengzhou 450044, China
| | - Yufei Wang
- School of Chemical Engineering and Food Science, Zhengzhou University of Technology, 18 Yingcai Street, Zhengzhou 450044, China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qing-Yun Chen
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chao Liu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| |
Collapse
|
5
|
Doche F, Escudero J, Petit‐Cancelier F, Xiong H, Couve‐Bonnaire S, Audisio D, Poisson T, Besset T. Directed Palladium Catalyzed C-H (Ethoxycarbonyl)difluoromethylthiolation Reactions. Chemistry 2022; 28:e202202099. [PMID: 35904010 PMCID: PMC9826264 DOI: 10.1002/chem.202202099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 01/11/2023]
Abstract
The unprecedented Pd-catalyzed (ethoxycarbonyl)difluoromethylthiolation reaction of various unsaturated derivatives was studied. In the presence of the (ethoxycarbonyl)difluoromethylsulfenamide reagent I and under mild reaction conditions (60 °C), both 2-(hetero)aryl and 2-(α-aryl-vinyl)pyridine derivatives were smoothly functionalized with this methodology (37 examples, up to 87 % yield). Moreover, the synthetic interest of this fluorinated moiety was further showcased by its conversion into various original fluorinated residues. Finally, a plausible mechanism for this transformation was suggested.
Collapse
Affiliation(s)
- Floriane Doche
- Normandie Univ.INSA RouenUNIROUENCNRSCOBRA (UMR 6014)76000RouenFrance).
| | - Julien Escudero
- Normandie Univ.INSA RouenUNIROUENCNRSCOBRA (UMR 6014)76000RouenFrance).
| | | | - Heng‐Ying Xiong
- Normandie Univ.INSA RouenUNIROUENCNRSCOBRA (UMR 6014)76000RouenFrance).
| | | | - Davide Audisio
- CEADépartement Médicaments et Technologies pour la SantéSCBMUniversité Paris Saclay91191Gif-sur-YvetteFrance
| | - Thomas Poisson
- Normandie Univ.INSA RouenUNIROUENCNRSCOBRA (UMR 6014)76000RouenFrance).
- Institut Universitaire de France1 rue Descartes75231ParisFrance
| | - Tatiana Besset
- Normandie Univ.INSA RouenUNIROUENCNRSCOBRA (UMR 6014)76000RouenFrance).
| |
Collapse
|
6
|
Petit‐Cancelier F, Ruyet L, Couve‐Bonnaire S, Besset T. Distal Construction of a Carbon‐SCF
2
R Bond on Aliphatic Alcohols Enabled by 1,5‐Hydrogen‐Atom Transfer. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Louise Ruyet
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| | | | - Tatiana Besset
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| |
Collapse
|