1
|
Ojo O, Njanje I, Abdissa D, Swart T, Higgitt RL, Dorrington RA. Newly isolated terpenoids (covering 2019-2024) from Aspergillus species and their potential for the discovery of novel antimicrobials. NATURAL PRODUCTS AND BIOPROSPECTING 2025; 15:19. [PMID: 40097883 PMCID: PMC11914449 DOI: 10.1007/s13659-025-00501-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/23/2025] [Indexed: 03/19/2025]
Abstract
The rapid emergence of drug-resistant microbial pathogens has posed challenges to global health in the twenty-first century. This development has significantly made most antibiotics ineffective in the treatment of infections they cause, resulting in increasing treatment costs and annual death rates. To address the challenge posed by these pathogens, we explore the potential of secondary metabolites from Aspergillus species as a source of new and effective therapeutic agents to treat drug-resistant infections. Terpenoids, a distinct group of natural products, are extensively distributed in plants and fungi, and have been attributed with significant antibacterial, anticancer, and antiviral activities. In this review, we present an overview of Aspergillus species, and review the novel terpenoids isolated from them from 2019 to April 2024, highlighting anti-infective activity against members of the ESKAPE pathogens. We further focus on the strategies through which the structural framework of these new terpenoids could be modified and/or optimized to feed a pipeline of new lead compounds targeting microbial pathogens. Overall, this review provides insight into the therapeutic applications of terpenoids sourced from Aspergillus species and the potential for the discovery of new compounds from these fungi to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Olusesan Ojo
- Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, South Africa.
- Department of Chemical Sciences, Lead City University, P.O. Box 30678, Ibadan, Oyo State, Nigeria.
| | - Idris Njanje
- Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, South Africa
| | - Dele Abdissa
- Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, South Africa
- Department of Chemistry, College of Natural Sciences, Jimma University, P.O Box 378, Jimma, Ethiopia
| | - Tarryn Swart
- Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, South Africa
| | - Roxanne L Higgitt
- Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, South Africa
| | - Rosemary A Dorrington
- Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, South Africa.
| |
Collapse
|
2
|
Yang G, Lin M, Kaliaperumal K, Lu Y, Qi X, Jiang X, Xu X, Gao C, Liu Y, Luo X. Recent Advances in Anti-Inflammatory Compounds from Marine Microorganisms. Mar Drugs 2024; 22:424. [PMID: 39330305 PMCID: PMC11433063 DOI: 10.3390/md22090424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Marine microbial secondary metabolites with diversified structures have been found as promising sources of anti-inflammatory lead compounds. This review summarizes the sources, chemical structures, and pharmacological properties of anti-inflammatory natural products reported from marine microorganisms in the past three years (2021-2023). Approximately 252 anti-inflammatory compounds, including 129 new ones, were predominantly obtained from marine fungi and they are structurally divided into polyketides (51.2%), terpenoids (21.0%), alkaloids (18.7%), amides or peptides (4.8%), and steroids (4.3%). This review will shed light on the development of marine microbial secondary metabolites as potential anti-inflammatory lead compounds with promising clinical applications in human health.
Collapse
Affiliation(s)
- Guihua Yang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Miaoping Lin
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Kumaravel Kaliaperumal
- Unit of Biomaterials Research, Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India
| | - Yaqi Lu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xin Qi
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaodong Jiang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xinya Xu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Chenghai Gao
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yonghong Liu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaowei Luo
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
3
|
Abstract
Covering: January to the end of December 2022This review covers the literature published in 2022 for marine natural products (MNPs), with 645 citations (633 for the period January to December 2022) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, the submerged parts of mangroves and other intertidal plants. The emphasis is on new compounds (1417 in 384 papers for 2022), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of NP structure class diversity in relation to biota source and biome is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Tanja Grkovic
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, and Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
4
|
Gao Y, Wang J, Meesakul P, Zhou J, Liu J, Liu S, Wang C, Cao S. Cytotoxic Compounds from Marine Fungi: Sources, Structures, and Bioactivity. Mar Drugs 2024; 22:70. [PMID: 38393041 PMCID: PMC10890532 DOI: 10.3390/md22020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Marine fungi, such as species from the Penicillium and Aspergillus genera, are prolific producers of a diversity of natural products with cytotoxic properties. These fungi have been successfully isolated and identified from various marine sources, including sponges, coral, algae, mangroves, sediment, and seawater. The cytotoxic compounds derived from marine fungi can be categorized into five distinct classes: polyketides, peptides, terpenoids and sterols, hybrids, and other miscellaneous compounds. Notably, the pre-eminent group among these compounds comprises polyketides, accounting for 307 out of 642 identified compounds. Particularly, within this collection, 23 out of the 642 compounds exhibit remarkable cytotoxic potency, with IC50 values measured at the nanomolar (nM) or nanogram per milliliter (ng/mL) levels. This review elucidates the originating fungal strains, the sources of isolation, chemical structures, and the noteworthy antitumor activity of the 642 novel natural products isolated from marine fungi. The scope of this review encompasses the period from 1991 to 2023.
Collapse
Affiliation(s)
- Yukang Gao
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Jianjian Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Pornphimon Meesakul
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA;
| | - Jiamin Zhou
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Jinyan Liu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Shuo Liu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Cong Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA;
| |
Collapse
|
5
|
Hill RA, Sutherland A. Hot off the press. Nat Prod Rep 2022. [PMID: 35133387 DOI: 10.1039/d2np90004a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as anisotanol A from Anisodus tanguticus.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK.
| | | |
Collapse
|