1
|
Dočekal V, Lóška L, Kurčina A, Císařová I, Veselý J. Desymmetric esterification catalysed by bifunctional chiral N-heterocyclic carbenes provides access to inherently chiral calix[4]arenes. Nat Commun 2025; 16:4443. [PMID: 40360493 PMCID: PMC12075856 DOI: 10.1038/s41467-025-59781-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Calix[4]arenes display inherent chirality, with broad applications in synthetic and medicinal chemistry and in materials sciences. However, their use is hindered by their limited synthetic accessibility, primarily due to the lack of enantioselective methods for preparing chiral calix[4]arenes with an ABCC substitution pattern. Here, we address this challenge by presenting a simple, efficient, and metal-free protocol for organocatalytic desymmetrisation of prochiral diformylcalix[4]arenes. Through this highly effective and sustainable approach, we synthesize structurally unique products in gram-scale reactions. Accordingly, this method facilitates extensive post-functionalisations of the carbonyl groups, including for organocatalyst development. Furthermore, our experimental mechanistic studies demonstrate that desymmetrisation determines enantiocontrol in esterification reactions catalysed by N-heterocyclic carbenes. These findings underscore the broad potential of this method for providing versatile access to inherently chiral calix[4]arenes with an ABCC substitution pattern while offering a valuable platform for asymmetric molecular recognition and catalysis.
Collapse
Affiliation(s)
- Vojtěch Dočekal
- Department of Organic Chemistry, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Ladislav Lóška
- Department of Organic Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Adam Kurčina
- Department of Organic Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Veselý
- Department of Organic Chemistry, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
2
|
Betinol IO, Kuang Y, Mulley BP, Reid JP. Controlling Stereoselectivity with Noncovalent Interactions in Chiral Phosphoric Acid Organocatalysis. Chem Rev 2025; 125:4184-4286. [PMID: 40101184 DOI: 10.1021/acs.chemrev.4c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Chiral phosphoric acids (CPAs) have emerged as highly effective Brønsted acid catalysts in an expanding range of asymmetric transformations, often through novel multifunctional substrate activation modes. Versatile and broadly appealing, these catalysts benefit from modular and tunable structures, and compatibility with additives. Given the unique types of noncovalent interactions (NCIs) that can be established between CPAs and various reactants─such as hydrogen bonding, aromatic interactions, and van der Waals forces─it is unsurprising that these catalyst systems have become a promising approach for accessing diverse chiral product outcomes. This review aims to provide an in-depth exploration of the mechanisms by which CPAs impart stereoselectivity, positioning NCIs as the central feature that connects a broad spectrum of catalytic reactions. Spanning literature from 2004 to 2024, it covers nucleophilic additions, radical transformations, and atroposelective bond formations, highlighting the applicability of CPA organocatalysis. Special emphasis is placed on the structural and mechanistic features that govern CPA-substrate interactions, as well as the tools and techniques developed to enhance our understanding of their catalytic behavior. In addition to emphasizing mechanistic details and stereocontrolling elements in individual reactions, we have carefully structured this review to provide a natural progression from these specifics to a broader, class-level perspective. Overall, these findings underscore the critical role of NCIs in CPA catalysis and their significant contributions to advancing asymmetric synthesis.
Collapse
Affiliation(s)
- Isaiah O Betinol
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Yutao Kuang
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Brian P Mulley
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jolene P Reid
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
3
|
Huang YH, Gu QX, Chao QC, Xiao HZ, Lu HH. Enantioselective Divergent Total Syntheses of Cycloaurenones and Dysiherbols. Angew Chem Int Ed Engl 2025:e202507638. [PMID: 40232297 DOI: 10.1002/anie.202507638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 04/16/2025]
Abstract
Cycloaurenones and dysiherbols are naturally occurring sesquiterpene quinones/quinols that share a 6/6/5/6 tetracyclic carbon skeleton with either a cis- or trans-decalin system containing four contiguous stereocenters, including three contiguous all-carbon quaternary stereocenters. Total syntheses of cycloaurenones have not been reported. Herein, we present the first enantiodivergent syntheses of cycloaurenones and dysiherbols based on manipulation of a common cyclohexadienone intermediate: namely, a local desymmetric Giese-Baran-type cyclization for cycloaurenones and a copper-catalyzed enantioselective conjugate addition for dysiherbols. Moreover, the key cyclohexadienone intermediate was readily accessible by a bidirectional approach from a chiral bis-Weinreb amide. The 1,4-nonadjacent stereocenters were installed by an unprecedented enantioselective hydrogenation of the corresponding bis-α,β-unsaturated Weinreb amide (>99:1 chiral/meso ratio, >99% enantiomeric excess).
Collapse
Affiliation(s)
- Yu-Hao Huang
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Precise Synthesis of Functional Molecules, Department of Chemistry, and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, China
| | - Qing-Xiu Gu
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Precise Synthesis of Functional Molecules, Department of Chemistry, and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, China
| | - Qing-Cen Chao
- Zhejiang Key Laboratory of Precise Synthesis of Functional Molecules, Department of Chemistry, and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, China
| | - Han-Zhi Xiao
- Zhejiang Key Laboratory of Precise Synthesis of Functional Molecules, Department of Chemistry, and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, China
| | - Hai-Hua Lu
- Zhejiang Key Laboratory of Precise Synthesis of Functional Molecules, Department of Chemistry, and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, China
| |
Collapse
|
4
|
Sun S, Sun S, Zi W. Palladium-catalyzed enantioselective β-hydride elimination for the construction of remote stereocenters. Nat Commun 2025; 16:2227. [PMID: 40044712 PMCID: PMC11882921 DOI: 10.1038/s41467-025-57437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 02/19/2025] [Indexed: 03/09/2025] Open
Abstract
The β-H elimination is a crucial elementary step in transition-metal catalysis, but controlling the stereochemistry of this process has been underdeveloped. The limited works reported so far have only focused on creating axial chirality in allenes, and no report has been able to build central chirality using asymmetric β-H elimination. In this study, we report a Trost ligand-enabled enantioselective desymmetric β-H elimination reaction from π-allyl-Pd. This transformation provides rapid access to cyclohexenes bearing a C4-remoted stereocenter, and total synthesis of (-)-oleuropeic acid and (-)-7-hydroxyterpineol is demonstrated. Computational studies have shown that the β-H elimination is the rate-determining step, and the non-covalent interactions between the amide moiety of the Trost ligand and the benzene and cyclohexane moieties of the substrate play a key role in stereocontrol during the β-H elimination.
Collapse
Affiliation(s)
- Shaozi Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shengnan Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300071, China.
| |
Collapse
|
5
|
Khuntia R, Maity D, Chandra Pan S. Catalytic Asymmetric De Novo Synthesis of Chiral Pyrroles Through Desymmetrizing Oxidative [3+2]-Cycloaddition and the Van Leusen Reaction. Chemistry 2025; 31:e202404511. [PMID: 39910876 DOI: 10.1002/chem.202404511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Indexed: 02/07/2025]
Abstract
Central chirality in heteroarene derivatives arising from unsymmetrically substituted heteroarene rings is an intriguing but underexplored topic. Herein, we reported the first catalytic enantioselective de novo construction of centrally chiral pyrroles through desymmetrizing oxidative [3+2]-cycloaddition by employing silver catalysis. This judicious desymmetrization can produce at least four continuous stereogenic centers without creating any additional stereocenter. Furthermore, to introduce a more diverse set of substituents, we developed the first catalytic asymmetric Van Leusen reaction with α-substituted TosMIC for the synthesis of centrally chiral pyrroles. A wide range of polycyclic 2-substituted, 3,4-fused pyrroles were obtained in high yields and with good to high enantioselectivities. This report includes the elaboration of methanobenzo[f]isoindole to synthetically challenging building block chiral isoindole compounds, which are synthesized enantioselectively for the first time.
Collapse
Affiliation(s)
- Rupkumar Khuntia
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Diptendu Maity
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Subhas Chandra Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| |
Collapse
|
6
|
Liang H, Battistoni LD, Tcyrulnikov S, Allais C, Singer RA, Morken JP. Palladium-Catalyzed Enantioselective Stereodivergent Desymmetrization of Cyclic 1,4-Allyldiboronates. J Am Chem Soc 2025; 147:5560-5565. [PMID: 39902905 DOI: 10.1021/jacs.4c16020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
In the presence of a chiral palladium-based catalyst, 1,4-diboryl-2-alkenes undergo enantioselective cross-coupling that results in desymmetrization of the substrate structure. Depending on the reaction conditions and the choice of ligand, the reaction can occur with cis or trans selectivity, allowing the construction of an array of different substituted chiral carbocycles in an enantiomerically enriched fashion.
Collapse
Affiliation(s)
- Hao Liang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Lorenzo D Battistoni
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Sergei Tcyrulnikov
- Pfizer Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Christophe Allais
- Pfizer Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Robert A Singer
- Pfizer Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - James P Morken
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
7
|
Liu C, Yang Y, Hong W, Ma JA, Zhu Y. Ion Hydration Enables Generality in Asymmetric Catalysis: Desymmetrization to P-Stereogenic Triarylphosphine Derivatives. Angew Chem Int Ed Engl 2025; 64:e202417827. [PMID: 39714434 DOI: 10.1002/anie.202417827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/04/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Asymmetric synthesis relies on seamless transmission of stereochemical information from a chiral reagent/catalyst to a prochiral substrate. The disruption by substrates' structural changes presents a hurdle in innovating generality-oriented asymmetric catalysis. Here, we report a strategy for substrate adaptability by exploiting a fundamental physicochemical phenomenon-ion hydration, in developing remote desymmetrization to access P-stereogenic triarylphosphine oxides and sulfides. Compared to existing methods, this approach does not require pre-installed ortho substituents and avoids the use of Grignard/organolithium reagents. Simply tuning the water/ion ratio in the reaction media tailors the water-mediated ionic substrate-catalyst preorganization to counterbalance the structural changes in the substrates, thus further increasing the diversity of enantioenriched P-stereogenic compounds. This study shows that it is viable and practical to precisely manipulate ionic interactions through tuning the dynamic ion hydration in situ, thereby adding a distinctive dimension to catalyst engineering in the pursuit of substrate generality in asymmetric catalysis.
Collapse
Affiliation(s)
- Chi Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 2, Singapore, 117543, Singapore
| | - Yang Yang
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 2, Singapore, 117543, Singapore
| | - Wenyang Hong
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 2, Singapore, 117543, Singapore
| | - Jun-An Ma
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemistry, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China
| | - Ye Zhu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 2, Singapore, 117543, Singapore
| |
Collapse
|
8
|
Li C, Song J, Wang T, Fang X. Enantioselective Synthesis of Axially Chiral Allylic Nitriles via Nickel-Catalyzed Desymmetric Cyanation of Biaryl Diallylic Alcohols. Angew Chem Int Ed Engl 2025; 64:e202417208. [PMID: 39422541 DOI: 10.1002/anie.202417208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 10/19/2024]
Abstract
Axially chiral nitriles are common motifs in organic photoelectric materials, biological compounds, and agrochemicals. Unfortunately, the limited synthetic approaches to axially chiral nitriles have impeded their availability. Herein, we report the first nickel-catalyzed desymmetric allylic cyanation of biaryl allylic alcohols for the synthesis of axially chiral nitrile structures in high yields with excellent enantioselectivities (up to 90 % yield and >99 % ee). This process enables the synthesis of a diverse range of axially chiral allylic nitriles bearing β,γ-unsaturated alcohol moieties. Leveraging the allylic alcohol and cyano groups as versatile functionalization handles allow for further derivatization of these axially chiral frameworks. Density functional theory (DFT) calculations suggest that both steric and electronic interactions play crucial roles in determining the enantioselectivity of this transformation. Moreover, this mild and facile protocol is also applicable for gram-scale preparation of the chiral nitriles.
Collapse
Affiliation(s)
- Can Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jian Song
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Ting Wang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| | - Xianjie Fang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
9
|
Biswas S, Kundu S, Chandra Pan S. Organocatalytic Asymmetric Synthesis of C-N Atropisomers with Pyrrole, Oxindole and Succinimide Scaffold. Chem Asian J 2025; 20:e202401132. [PMID: 39523707 DOI: 10.1002/asia.202401132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
An asymmetric synthesis of C-N atropisomers with pyrrole, oxindole and succinimide moities was developed via organocatalytic desymmetric Michael addition of 3-pyrrolyloxindole with prochiral N-aryl maleimides. The C-N atropisomers were obtained in acceptable yields with high diastero- and enantioselectivities (>20 : 1 dr, up to >99 % ee). C-N Rotational energy barrier has also been determined.
Collapse
Affiliation(s)
- Subhankar Biswas
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Subham Kundu
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Subhas Chandra Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| |
Collapse
|
10
|
Biswas S, Pan SC. Catalytic Asymmetric Desymmetrizing [4+2] Cycloaddition/Base-Mediated Oxidative Aromatization Sequence: De Novo Synthesis of Isobenzofuranone-Embedded Chiral Arenes. Org Lett 2025; 27:309-314. [PMID: 39731753 DOI: 10.1021/acs.orglett.4c04342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
Herein, an organocatalytic asymmetric desymmetrizing [4+2] cycloaddition/base-mediated oxidative aromatization reaction sequence has been developed between spirophthalide 2,5-cyclohexadienones and β-methyl cinnamaldehydes. The reaction proceeds through in situ chiral dienamine intermediate formation, and the densely functionalized spirocyclic isobenzofuranone-embedded chiral arenes were formed in high yields with excellent enantioselectivities. A 2-fold desymmetrization reaction was also performed, and the products were obtained in high enantioselectivities.
Collapse
Affiliation(s)
- Subhankar Biswas
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Subhas Chandra Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| |
Collapse
|
11
|
Hu HL, Fang S, Luo X, He J, Wu JH, Su Z, Xu Z, Wang T. Organocatalytic Enantioselective Arylation to Access Densely Aryl-Substituted P-Stereogenic Centers. Org Lett 2025; 27:109-114. [PMID: 39714910 DOI: 10.1021/acs.orglett.4c03992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Although methods for synthesizing chiral phosphorus scaffolds are available, the potential of this molecular chirality remains largely unexplored. Herein, we present a remote desymmetrization of prochiral biaryl phosphine oxides through an organocatalytic asymmetric arylation. This metal-free approach enables the efficient synthesis of a wide range of densely functionalized P(V)-stereogenic compounds with good to excellent yields and satisfactory enantioselectivities. Mechanistic studies reveal that hydrogen bonding and ion-pairing interactions are crucial for achieving precise stereocontrol in this transformation.
Collapse
Affiliation(s)
- Hui-Lin Hu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Siqiang Fang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xingjie Luo
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Jiajia He
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Jia-Hong Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Zhipeng Xu
- College of Water Resource and Hydropower, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
12
|
Lam NS, Dhankhar J, Lahdenperä ASK, Phipps RJ. Catalytic Enantioselective Hydrogen Atom Abstraction Enables the Asymmetric Oxidation of Meso Diols. J Am Chem Soc 2024; 146:33302-33308. [PMID: 39589143 PMCID: PMC11638968 DOI: 10.1021/jacs.4c13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
Desymmetrization of meso diols is an important strategy for the synthesis of chiral oxygen-containing building blocks. Oxidative desymmetrization is an important subclass, but existing methods are often constrained by the need for activated alcohol substrates. We disclose a conceptually distinct strategy toward oxidative diol desymmetrization that is enabled by catalytic enantioselective hydrogen atom abstraction. Following single electron oxidation of a cinchona alkaloid-derived catalyst, enantiodetermining hydrogen atom abstraction generates a desymmetrized ketyl radical intermediate which reacts with either DIAD or O2 before in situ elimination to form valuable hydroxyketone products. A range of cyclic and acyclic meso diols are competent, defining the absolute configuration of up to four stereocenters in a single operation. As well as providing rapid access to complex hydroxyketones, this work emphasizes the broad synthetic potential of harnessing hydrogen atom abstraction in an enantioselective manner.
Collapse
Affiliation(s)
| | - Jyoti Dhankhar
- Yusuf Hamied Department
of Chemistry, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| | | | - Robert J. Phipps
- Yusuf Hamied Department
of Chemistry, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
13
|
Gaucherand A, Yen-Pon E, Domain A, Bourhis A, Rodriguez J, Bonne D. Enantioselective synthesis of molecules with multiple stereogenic elements. Chem Soc Rev 2024; 53:11165-11206. [PMID: 39344998 DOI: 10.1039/d3cs00238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
This review explores the fascinating world of molecules featuring multiple stereogenic elements, unraveling the different strategies designed over the years for their enantioselective synthesis. Specifically, (dynamic) kinetic resolutions, desymmetrisations and simultaneous installation of stereogenic elements exploiting either metal- or organo-catalysis are the principal approaches to efficiently create and control the three-dimensional shapes of these attractive molecules. Although most molecules presented in this review possess a stereogenic carbon atom in combination with a stereogenic axis, other combinations with helices or planes of chirality have started to emerge, as well as molecules displaying more than two different stereogenic elements.
Collapse
Affiliation(s)
| | | | - Antoine Domain
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| | - Alix Bourhis
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| | - Jean Rodriguez
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| | - Damien Bonne
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| |
Collapse
|
14
|
Fang S, Bao Z, Liu Z, Wu Z, Tan JP, Wei X, Li B, Wang T. Cationic Foldamer-Catalyzed Asymmetric Synthesis of Inherently Chiral Cages. Angew Chem Int Ed Engl 2024; 63:e202411889. [PMID: 39086010 DOI: 10.1002/anie.202411889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024]
Abstract
The stereochemistry of shape-persistent molecular cages, particularly those resembling prisms, exerts significant influence on their application-specific functionalities. Although methods exist for fabricating inherently chiral prism-like cages, strategies for catalytic asymmetric synthesis of these structures in a diversity-oriented fashion remain unexplored. Herein, we introduce an unprecedented organocatalytic desymmetrization approach for the generation of inherently chiral prism-like cages via phosphonium-containing foldamer-catalyzed SNAr reactions. This methodology establishes a topological connection, enabling the facile assembly of a wide range of versatile stereogenic-at-cage building blocks possessing two highly modifiable groups. Furthermore, subsequent stereospecific transformations of the remaining chlorides and/or ethers afford convenient access to numerous functionally relevant chiral-at-cage molecules.
Collapse
Affiliation(s)
- Siqiang Fang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wang jiang Road, Chengdu, 610064, P. R. China
| | - Zhaowei Bao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wang jiang Road, Chengdu, 610064, P. R. China
| | - Zanjiao Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wang jiang Road, Chengdu, 610064, P. R. China
| | - Zhengdong Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wang jiang Road, Chengdu, 610064, P. R. China
| | - Jian-Ping Tan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wang jiang Road, Chengdu, 610064, P. R. China
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, No. 88, Fuxing East Road, Xiangtan, 411104, P. R. China
| | - Xin Wei
- Department of Ophthalmology, West China Hospital, Sichuan University
| | - Bo Li
- Queen Mary Engineering School, Northwestern Polytechnical University, 1 Dongxiang Road, Chang'an District, Xi'an, 710129, P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wang jiang Road, Chengdu, 610064, P. R. China
- Beijing National Laboratory for Molecular Sciences, Zhongguancun North First Street NO. 2, Beijing, 100190, P. R. China
| |
Collapse
|
15
|
Zheng Y, Yang T, Chan KF, Lin Z, Huang Z. Cobalt-catalysed desymmetrization of malononitriles via enantioselective borohydride reduction. Nat Chem 2024; 16:1845-1854. [PMID: 39367062 DOI: 10.1038/s41557-024-01592-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 07/02/2024] [Indexed: 10/06/2024]
Abstract
The high nitrogen content and diverse reactivity of malononitrile are widely harnessed to access nitrogen-rich fine chemicals. Although the facile substitutions of malononitrile can give structurally diverse quaternary carbons, their access to enantioenriched molecules, particularly chiral amines that are prevalent in bioactive compounds, remains rare. Here we report a cobalt-catalysed desymmetric reduction of disubstituted malononitriles to give highly functionalized β-quaternary amines. The pair of cobalt salt and sodium borohydride is proposed to generate a cobalt-hydride intermediate and initiate the reduction. Meanwhile, the enantiocontrol of the dinitrile is achieved through a tailored bisoxazoline ligand with two large flanks that create a narrow gap to host the bystanding nitrile and thus restrict the C(ipso)-C(α) bond rotation of the complexed one. Combined with the extensive derivatization possibilities of all substituents on the quaternary carbon, this asymmetric reduction unlocks pathways from malononitrile as a bulk chemical feedstock to intricate, chiral nitrogen-containing molecules.
Collapse
Affiliation(s)
- Yin Zheng
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Tilong Yang
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ka Fai Chan
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Zhongxing Huang
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
16
|
Hurtado J, Iragorri N, Reyes E, Vicario JL, Fernández E. Cu-Catalyzed Enantioselective Borylative Desymmetrization of 1-Vinyl Cyclobutanols and Axial-to-Point Chirality Transfer in a Diastereoconvergent/Stereoretentive Allylation Scenery. Angew Chem Int Ed Engl 2024; 63:e202411232. [PMID: 39056890 DOI: 10.1002/anie.202411232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Cu-catalyzed asymmetric allylic borylation of 3,3'-disubstituted 1-vinylcyclobutan-1-ols renders axially chiral allylborane systems, with high asymmetric induction for both enantiomers, by precise selection of the cis or trans substrate. The enantioenriched alkylidenecyclobutanes served as chiral platform to prove the conceptually challenging transference of the axial-to-point chirality through two new stereocenters and one pseudoasymmetric carbon generated via diastereoconvergent allylation of aldehydes, without enantioselective erosion.
Collapse
Affiliation(s)
- Josebe Hurtado
- Department of Organic and Inorganic Chemistry. University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Spain
| | - Nerea Iragorri
- Department Química Física i Inorgànica, University Rovira i Virgili, C/ Marcel⋅lí Domingo s/n, Tarragona, Spain
| | - Efraim Reyes
- Department of Organic and Inorganic Chemistry. University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Spain
| | - Jose L Vicario
- Department of Organic and Inorganic Chemistry. University of the Basque Country (UPV/EHU), P.O. Box 644, 48080, Bilbao, Spain
| | - Elena Fernández
- Department Química Física i Inorgànica, University Rovira i Virgili, C/ Marcel⋅lí Domingo s/n, Tarragona, Spain
| |
Collapse
|
17
|
Lahdenperä ASK, Dhankhar J, Davies DJ, Lam NYS, Bacoş PD, de la Vega-Hernández K, Phipps RJ. A chiral hydrogen atom abstraction catalyst for the enantioselective epimerization of meso-diols. Science 2024; 386:42-49. [PMID: 39361751 DOI: 10.1126/science.adq8029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/29/2024] [Indexed: 10/05/2024]
Abstract
Hydrogen atom abstraction is an important elementary chemical process but is very difficult to carry out enantioselectively. We have developed catalysts, readily derived from the Cinchona alkaloid family of natural products, which can achieve this by virtue of their chiral amine structure. The catalyst, following single-electron oxidation, desymmetrizes meso-diols by selectively abstracting a hydrogen atom from one carbon center, which then regains a hydrogen atom by abstraction from a thiol. This results in an enantioselective epimerization process, forming the chiral diastereomer with high enantiomeric excess. Cyclic and acyclic 1,2-diols are compatible, as are acyclic 1,3-diols. Additionally, we demonstrate the viability of combining our approach with carbon-carbon bond formation in Giese addition. Given the increasing number of synthetic methods involving hydrogen atom transfer steps, we anticipate that this work will have a broad impact in the field of enantioselective radical chemistry.
Collapse
Affiliation(s)
- Antti S K Lahdenperä
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Jyoti Dhankhar
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Daniel J Davies
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Nelson Y S Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - P David Bacoş
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | | | - Robert J Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|
18
|
He YP, Li ZC, Wang ZQ, Zheng WY, Wu H. Enamine Acylation Enabled Desymmetrization of Malonic Esters. J Am Chem Soc 2024; 146:26387-26396. [PMID: 39263905 DOI: 10.1021/jacs.4c09276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Asymmetric enamine alkylation represents a powerful tool for stereoselective C-C bond formation; in contrast, the development of enantioselective enamine acylation remains elusive. Here, we report that a chiral phosphoric acid can render an in-situ-formed enamine to undergo a stereoselective intramolecular α-carbon acylation, providing an alternative approach for the synthesis of useful pyrrolinones and indolinones bearing tetrasubstituted stereocenters. Utilizing an effective integration of the desymmetrization strategy and bifunctional organocatalysis, the first example of enantioselective enamine acylation is achieved by employing readily available aminomalonic esters and cyclic ketones. Instead of reactive and moisture-sensitive acyl chlorides, common esters with low electrophilicity were successfully used as efficient acylating reagents via hydrogen bonding interactions. The utility is demonstrated in the concise and enantioselective synthesis of (+)-LipidGreen I and II. Experimental studies and DFT calculations establish the reaction pathway and the origin of stereocontrol.
Collapse
Affiliation(s)
- Yu-Ping He
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Zhuo-Chen Li
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zi-Qi Wang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen-Ya Zheng
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua Wu
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
19
|
Wang J, Yin J, Imtiaz H, Wang H, Li Y. Enantioselective Total Synthesis of (-)-Cyathin B 2: A Desymmetric Double-Allylboration Approach. J Am Chem Soc 2024; 146:25078-25087. [PMID: 39196853 DOI: 10.1021/jacs.4c08042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
A powerful Pt-catalyzed asymmetric diboration/desymmetric double-allylboration cascade reaction has been developed for the construction of synthetically useful, densely functionalized hydrindanes with five stereocenters, including three quaternary ones, in good yields and excellent enantiomeric excess (ee) values within a single synthetic operation. A unified strategy utilizing this key tandem methodology enabled the concise asymmetric total synthesis of cyathane diterpene (-)-Cyathin B2 in 14 steps from commercially available starting materials, thereby demonstrating its remarkable potential in the synthesis of hydrindane-containing natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Jianping Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jiacheng Yin
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hayatullah Imtiaz
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hongyu Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yun Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
20
|
Zhang N, Wang C, Xu H, Zheng M, Jiang H, Chen K, Ma Z. Asymmetric Total Synthesis of Alstrostine G Utilizing a Catalytic Asymmetric Desymmetrization Strategy. Angew Chem Int Ed Engl 2024; 63:e202407127. [PMID: 38818628 DOI: 10.1002/anie.202407127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
A highly effective enantioselective monobenzoylation of 1,3-diols has been developed for the synthesis of 1,1-disubstituted tetrahydro-β-carbolines. The chemistry has been successfully applied to the asymmetric total synthesis of (+)-alstrostine G, which also features a cascade Heck/hemiamination reaction enabling facile construction of the pivotal pentacyclic core.
Collapse
Affiliation(s)
- Nanping Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, P. R. China
| | - Cheng Wang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, P. R. China
| | - Hailong Xu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, P. R. China
| | - Ming Zheng
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, P. R. China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Zhiqiang Ma
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, P. R. China
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
21
|
Foubelo F, Nájera C, Retamosa MG, Sansano JM, Yus M. Catalytic asymmetric synthesis of 1,2-diamines. Chem Soc Rev 2024; 53:7983-8085. [PMID: 38990173 DOI: 10.1039/d3cs00379e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The asymmetric catalytic synthesis of 1,2-diamines has received considerable interest, especially in the last ten years, due to their presence in biologically active compounds and their applications for the development of synthetic building blocks, chiral ligands and organocatalysts. Synthetic strategies based on C-N bond-forming reactions involve mainly (a) ring opening of aziridines and azabenzonorbornadienes, (b) hydroamination of allylic amines, (c) hydroamination of enamines and (d) diamination of olefins. In the case of C-C bond-forming reactions are included (a) the aza-Mannich reaction of imino esters, imino nitriles, azlactones, isocyano acetates, and isothiocyanates with imines, (b) the aza-Henry reaction of nitroalkanes with imines, (c) imine-imine coupling reactions, and (d) reductive coupling of enamines with imines, and (e) [3+2] cycloaddition with imines. C-H bond forming reactions include hydrogenation of CN bonds and C-H amination reactions. Other catalytic methods include desymmetrization reactions of meso-diamines.
Collapse
Affiliation(s)
- Francisco Foubelo
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| | - Carmen Nájera
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| | - Ma Gracia Retamosa
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| | - José M Sansano
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| | - Miguel Yus
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| |
Collapse
|
22
|
Chen M, Zhu L, Zheng W, Fu Y, Zhang J, He H, Antilla JC. Catalytic Asymmetric Desymmetrization of Cyclic 1,3-Diketones Using Chiral Boro-phosphates. Org Lett 2024; 26:3951-3956. [PMID: 38678546 DOI: 10.1021/acs.orglett.4c01195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Herein, we report a chiral boro-phosphate-catalyzed reductive amination for the desymmetrization of 2,2-disubstituted 1,3-cyclopentadiones with pinacolborane as the reducing agent, delivering chiral β-amino ketones with an all-carbon quaternary stereocenter in good yields (≤94%), high enantioselectivities (≤97% ee), and excellent diastereoselectivities (>20:1 dr). This reaction has a broad substrate scope and high functional group tolerance. The importance of the chiral products was also demonstrated through the preparation of multifunctional building blocks and heterocycles.
Collapse
Affiliation(s)
- Minglei Chen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Linfei Zhu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Weitao Zheng
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Yili Fu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Junru Zhang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Hualing He
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Jon C Antilla
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| |
Collapse
|
23
|
de Oliveira AG, Wang MF, Carmona RC, Lustosa DM, Gorbatov SA, Correia CRD. Enantioselective synthesis of β-aryl-γ-lactam derivatives via Heck-Matsuda desymmetrization of N-protected 2,5-dihydro-1 H-pyrroles. Beilstein J Org Chem 2024; 20:940-949. [PMID: 38711594 PMCID: PMC11070958 DOI: 10.3762/bjoc.20.84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/11/2024] [Indexed: 05/08/2024] Open
Abstract
We report herein an enantioselective palladium-catalyzed Heck-Matsuda reaction for the desymmetrization of N-protected 2,5-dihydro-1H-pyrroles with aryldiazonium salts, using the chiral N,N-ligand (S)-PyraBox. This strategy has allowed straightforward access to a diversity of 4-aryl-γ-lactams via Heck arylation followed by a sequential Jones oxidation. The overall method displays a broad scope and good enantioselectivity, favoring the (R) enantiomer. The applicability of the protocol is highlighted by the efficient enantioselective syntheses of the selective phosphodiesterase-4-inhibitor rolipram and the commercial drug baclofen as hydrochloride.
Collapse
Affiliation(s)
- Arnaldo G de Oliveira
- Department of Organic Chemistry, Chemistry Institute, University of Campinas, Rua Josué de Castro, 13083-970 Campinas, São Paulo, Brazil
| | - Martí F Wang
- Department of Organic Chemistry, Chemistry Institute, University of Campinas, Rua Josué de Castro, 13083-970 Campinas, São Paulo, Brazil
| | - Rafaela C Carmona
- Department of Organic Chemistry, Chemistry Institute, University of Campinas, Rua Josué de Castro, 13083-970 Campinas, São Paulo, Brazil
| | - Danilo M Lustosa
- Department of Organic Chemistry, Chemistry Institute, University of Campinas, Rua Josué de Castro, 13083-970 Campinas, São Paulo, Brazil
| | - Sergei A Gorbatov
- Department of Organic Chemistry, Chemistry Institute, University of Campinas, Rua Josué de Castro, 13083-970 Campinas, São Paulo, Brazil
| | - Carlos R D Correia
- Department of Organic Chemistry, Chemistry Institute, University of Campinas, Rua Josué de Castro, 13083-970 Campinas, São Paulo, Brazil
| |
Collapse
|
24
|
Dočekal V, Koucký F, Císařová I, Veselý J. Organocatalytic desymmetrization provides access to planar chiral [2.2]paracyclophanes. Nat Commun 2024; 15:3090. [PMID: 38600078 PMCID: PMC11006895 DOI: 10.1038/s41467-024-47407-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/01/2024] [Indexed: 04/12/2024] Open
Abstract
Planar chiral [2.2]paracyclophanes consist of two functionalized benzene rings connected by two ethylene bridges. These organic compounds have a wide range of applications in asymmetric synthesis, as both ligands and catalysts, and in materials science, as polymers, energy materials and dyes. However, these molecules can only be accessed by enantiomer separation via (a) time-consuming chiral separations and (b) kinetic resolution approaches, often with a limited substrate scope, yielding both enantiomers. Here, we report a simple, efficient, metal-free protocol for organocatalytic desymmetrization of prochiral diformyl[2.2]paracyclophanes. Our detailed experimental mechanistic study highlights differences in the origin of enantiocontrol of pseudo-para and pseudo-gem diformyl derivatives in NHC catalyzed desymmetrizations based on whether a key Breslow intermediate is irreversibly or reversibly formed in this process. This gram-scale reaction enables a wide range of follow-up derivatizations of carbonyl groups, producing various enantiomerically pure planar chiral [2.2]paracyclophane derivatives, thereby underscoring the potential of this method.
Collapse
Affiliation(s)
- Vojtěch Dočekal
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43, Prague, 2, Czech Republic.
| | - Filip Koucký
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43, Prague, 2, Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43, Prague, 2, Czech Republic
| | - Jan Veselý
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43, Prague, 2, Czech Republic.
| |
Collapse
|
25
|
Feng J, Liu RR. Catalytic Asymmetric Synthesis of N-N Biaryl Atropisomers. Chemistry 2024; 30:e202303165. [PMID: 37850396 DOI: 10.1002/chem.202303165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/19/2023]
Abstract
Atropisomers have emerged as important structural scaffolds in natural products, drug design, and asymmetric synthesis. Recently, N-N biaryl atropisomers have drawn increasing interest due to their unique structure and relatively stable axes. However, its asymmetric synthesis remains scarce compared to its well-developed C-C biaryl analogs. In this concept, we summarize the asymmetric synthesis of N-N biaryl atropisomers including N-N pyrrole-pyrrole, N-N pyrrole-indole, N-N indole-indole, and N-N indole-carbazole, during which a series synthetic strategies are highlighted. Also, a synthetic evolution is briefly reviewed and an outlook of N-N biaryl atropisomers synthesis is offered.
Collapse
Affiliation(s)
- Jia Feng
- College of Chemistry and Chemical Engineering, Qingdao University, NingXia Road 308#, Qingdao, 266071, China
| | - Ren-Rong Liu
- College of Chemistry and Chemical Engineering, Qingdao University, NingXia Road 308#, Qingdao, 266071, China
| |
Collapse
|
26
|
Meng J, He H, Liu Q, Xu H, Huang H, Ni SF, Li Z. Enantioselective Palladium(II)-Catalyzed Desymmetrizative Coupling of 7-Azabenzonorbornadienes with Alkynylanilines. Angew Chem Int Ed Engl 2024; 63:e202315092. [PMID: 37943545 DOI: 10.1002/anie.202315092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
A PdII -catalyzed, domino enantioselective desymmetrizative coupling of 7-azabenzonorbornadienes with alkynylanilines is disclosed herein. This operationally simple transformation generates three covalent bonds and two contiguous stereocenters with excellent enantio- and diastereo-selectivity. The resulting functionalized indole-dihydronaphthalene-amine conjugates served as an appealing platform to streamline the diversity-oriented synthesis (DOS) of other valuable enantioenriched compounds. DFT calculations revealed that the two stabilizing non-covalent interactions contributed to the observed enantioselectivity.
Collapse
Affiliation(s)
- Junjie Meng
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510641, Guangdong, China
| | - Hui He
- Department of Chemistry, Shantou University, Shantou, 515063, Guangdong, China
| | - Qianru Liu
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510641, Guangdong, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510641, Guangdong, China
| | - Huicai Huang
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510641, Guangdong, China
| | - Shao-Fei Ni
- Department of Chemistry, Shantou University, Shantou, 515063, Guangdong, China
| | - Zhaodong Li
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510641, Guangdong, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| |
Collapse
|
27
|
Konowalchuk DJ, Hall DG. Divergent Synthesis of 1,2,3,4-Tetrasubstituted Cyclobutenes from a Common Scaffold: Enantioselective Desymmetrization by Dual-Catalyzed Photoredox Cross-Coupling. Angew Chem Int Ed Engl 2023; 62:e202313503. [PMID: 37852934 DOI: 10.1002/anie.202313503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023]
Abstract
Four-membered carbocycles are important structural motifs found in several natural products and drugs. Amongst those, cyclobutenes are attractive intermediates because the residual olefin can be manipulated selectively into various saturated and unsaturated analogs. Few methods exist to access chiral tri- and tetra-C-substituted cyclobutenes and they are generally limited in terms of diversification. Herein, a divergent synthetic strategy was developed where a single optically enriched scaffold is diversified into a variety of derivatives with different substitution patterns. To this end, the enantioselective desymmetrization of prochiral 1,2-dibromocyclobutene imides was enabled by a dual Ir/Ni-catalyzed photoredox C(sp2 )-C(sp3 ) cross-coupling with an alkyltrifluoroborate salt to install a convertible carbon fragment in good yields and >90 % enantiomeric excess. Exceptional mono-coupling selectivity is observed and the resulting chiral bromocyclobutene serves as a common scaffold that can be transformed in a divergent manner into several valuable 1,2,3,4-tetra-C-substituted cyclobutane products while maintaining optical purity.
Collapse
Affiliation(s)
- Dawson J Konowalchuk
- Department of Chemistry, 4-010 Centennial Centre for Interdisciplinary Science, University of Alberta, 11335 Saskatchewan Dr NW, T6G 2G2, Edmonton, AB, Canada
| | - Dennis G Hall
- Department of Chemistry, 4-010 Centennial Centre for Interdisciplinary Science, University of Alberta, 11335 Saskatchewan Dr NW, T6G 2G2, Edmonton, AB, Canada
| |
Collapse
|
28
|
Yus M, Nájera C, Foubelo F, Sansano JM. Metal-Catalyzed Enantioconvergent Transformations. Chem Rev 2023; 123:11817-11893. [PMID: 37793021 PMCID: PMC10603790 DOI: 10.1021/acs.chemrev.3c00059] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 10/06/2023]
Abstract
Enantioconvergent catalysis has expanded asymmetric synthesis to new methodologies able to convert racemic compounds into a single enantiomer. This review covers recent advances in transition-metal-catalyzed transformations, such as radical-based cross-coupling of racemic alkyl electrophiles with nucleophiles or racemic alkylmetals with electrophiles and reductive cross-coupling of two electrophiles mainly under Ni/bis(oxazoline) catalysis. C-H functionalization of racemic electrophiles or nucleophiles can be performed in an enantioconvergent manner. Hydroalkylation of alkenes, allenes, and acetylenes is an alternative to cross-coupling reactions. Hydrogen autotransfer has been applied to amination of racemic alcohols and C-C bond forming reactions (Guerbet reaction). Other metal-catalyzed reactions involve addition of racemic allylic systems to carbonyl compounds, propargylation of alcohols and phenols, amination of racemic 3-bromooxindoles, allenylation of carbonyl compounds with racemic allenolates or propargyl bromides, and hydroxylation of racemic 1,3-dicarbonyl compounds.
Collapse
Affiliation(s)
- Miguel Yus
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Carmen Nájera
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Francisco Foubelo
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Departamento
de Química Orgánica and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - José M. Sansano
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Departamento
de Química Orgánica and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| |
Collapse
|
29
|
Xu Y, Luo Y, Ye J, Liu D, Zhang W. Rh-Catalyzed Enantioselective Desymmetric Hydrogenation of α-Acetamido-1,3-indanediones Using Ether-Bridged Biphenyl Diphosphine Ligands. J Am Chem Soc 2023; 145:21176-21182. [PMID: 37610861 DOI: 10.1021/jacs.3c07509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Novel axially chiral biphenyl diphosphine ligands Enm-BridgePhos, bearing an ether chain bridge at the 5,5'-position of the biphenyl backbone, have been developed and successfully applied in the Rh-catalyzed enantioselective desymmetric hydrogenation of α-acetamido-1,3-indanediones, providing chiral α-acetamido-β-hydroxybenzocyclic pentones in high yields (up to 97%) and with excellent enantioselectivities (up to 99% ee). The reaction could be carried out on a gram scale, and the corresponding products were used as vital intermediates for the synthesis of analogues of chiral spirobenzylisoquinoline alkaloids. Both the crystal structure analysis and the DFT calculations revealed that the large dihedral angle of the Enm-BridgePhos-Rh complexes is highly related to the excellent enantioselectivities.
Collapse
Affiliation(s)
- Yunnan Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yicong Luo
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jianxun Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
30
|
García de la Concepción J, Flores-Jiménez M, Cuccia LA, Light ME, Viedma C, Cintas P. Revisiting Homochiral versus Heterochiral Interactions through a Long Detective Story of a Useful Azobis-Nitrile and Puzzling Racemate. CRYSTAL GROWTH & DESIGN 2023; 23:5719-5733. [PMID: 37547876 PMCID: PMC10402293 DOI: 10.1021/acs.cgd.3c00372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/08/2023] [Indexed: 08/08/2023]
Abstract
This paper documents and reinvestigates the solid-state and crystal structures of 4,4'-azobis-4-cyanopentanoic acid (ACPA), a water-soluble azobis-nitrile of immense utility as a radical initiator in living polymerizations and a labile mechanophore that can be embedded within long polymer chains to undergo selective scission under mechanical activation. Surprisingly, for such applications, both the commercially available reagent and their derivatives are used as "single initiators" when this azonitrile is actually a mixture of stereoisomers. Although the racemate and meso compounds were identified more than half a century ago and their enantiomers were separated by classical resolution, there have been confusing narratives dealing with their characterization, the existence of a conglomeratic phase, and fractional crystallization. Our results report on the X-ray crystal structures of all stereoisomers for the first time, along with further details on enantiodiscrimination and the always intriguing arguments accounting for the stability of homochiral versus heterochiral crystal aggregates. To this end, metadynamic (MTD) simulations on stereoisomer molecular aggregates were performed to capture the incipient nucleation events at the picosecond time scale. This analysis sheds light on the driving homochiral aggregation of ACPA enantiomers.
Collapse
Affiliation(s)
- Juan García de la Concepción
- Department
of Organic and Inorganic Chemistry, Faculty of Sciences, and IACYS-Green
Chemistry and Sustainable Development Unit, University of Extremadura, E-06006 Badajoz, Spain
| | - Mirian Flores-Jiménez
- Department
of Organic and Inorganic Chemistry, Faculty of Sciences, and IACYS-Green
Chemistry and Sustainable Development Unit, University of Extremadura, E-06006 Badajoz, Spain
| | - Louis A. Cuccia
- Department
of Chemistry and Biochemistry, Concordia
University, 7141 Sherbrooke
Street West, H4B 1R6 Montreal, Canada
| | - Mark E. Light
- Department
of Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Cristóbal Viedma
- Department
of Crystallography and Mineralogy, University
Complutense, 28040 Madrid, Spain
| | - Pedro Cintas
- Department
of Organic and Inorganic Chemistry, Faculty of Sciences, and IACYS-Green
Chemistry and Sustainable Development Unit, University of Extremadura, E-06006 Badajoz, Spain
| |
Collapse
|
31
|
Uchikura T, Kato S, Makino Y, Fujikawa MJ, Yamanaka M, Akiyama T. Chiral Phosphoric Acid-Palladium(II) Complex Catalyzed Asymmetric Desymmetrization of Biaryl Compounds by C(sp 3)-H Activation. J Am Chem Soc 2023. [PMID: 37440358 DOI: 10.1021/jacs.3c03552] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Desymmetrization is an essential method for the synthesis of chiral compounds, particularly chiral biaryls. We have developed an enantioselective synthesis of axially chiral biaryls by desymmetrization using C(sp3)-H activation catalyzed by chiral palladium phosphate. Mechanistic studies show that C-H activation is the rate- and enantiomer-determining step. To the best of our knowledge, this is the first report of asymmetric desymmetrization of axially chiral compounds by C(sp3)-H activation.
Collapse
Affiliation(s)
- Tatsuhiro Uchikura
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Sotaro Kato
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Yudai Makino
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Megumi J Fujikawa
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Masahiro Yamanaka
- Department of Chemistry, Faculty of Science, Rikkyo University, 3-41-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Takahiko Akiyama
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
32
|
Chen ZY, Yang MW, Wang ZL, Xu YH. Copper-Catalyzed Enantioselective Desymmetric Protosilylation of Prochiral Diynes: Access to Optically Functionalized Tertiary Alcohols. Org Lett 2023. [PMID: 37418590 DOI: 10.1021/acs.orglett.3c01702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
In this protocol, a copper-catalyzed desymmetric protosilylation of prochiral diynes was developed. The corresponding products were obtained in moderate to high yields and enantiomeric ratios. This approach provides a simple method for synthesizing functionalized chiral tertiary alcohols in the presence of a chiral pyridine-bisimidazoline (Pybim) ligand.
Collapse
Affiliation(s)
- Zhi-Yuan Chen
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Meng-Wei Yang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zi-Lu Wang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yun-He Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
33
|
Rachii D, Caldwell DJ, Kosukegawa Y, Sexton M, Rablen PR, Malachowski WP. Ni-Catalyzed Enantioselective Intramolecular Mizoroki-Heck Reaction for the Synthesis of Phenanthridinone Derivatives. J Org Chem 2023. [PMID: 37321182 DOI: 10.1021/acs.joc.3c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A Ni-catalyzed enantioselective intramolecular Mizoroki-Heck reaction has been developed to transform symmetrical 1,4-cyclohexadienes with attached aryl halides into phenanthridinone analogues containing quaternary stereocenters. Herein, we report important advances in reaction optimization enabling control of unwanted proto-dehalogenation and alkene reduction side products. Moreover, this approach provides direct access to six-membered ring heterocyclic systems bearing all-carbon quaternary stereocenters, which have been much more challenging to form enantioselectively with nickel-catalyzed Heck reactions. A wide range of substrates were demonstrated to work in good to excellent yields. Good enantioselectivity was demonstrated using a new synthesized chiral iQuinox-type bidentate ligand (L27). The sustainability, low price of nickel catalysts, and significantly faster reaction rate (1 h) versus that of a recently reported palladium-catalyzed reaction (20 h) make this process an attractive alternative.
Collapse
Affiliation(s)
- Diana Rachii
- Chemistry Department, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Dana J Caldwell
- Chemistry Department, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Yui Kosukegawa
- Chemistry Department, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Mary Sexton
- Chemistry Department, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Paul R Rablen
- Chemistry Department, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - William P Malachowski
- Chemistry Department, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| |
Collapse
|
34
|
Wang X, Xue J, Rong ZQ. Divergent Access to Chiral C2- and C3-Alkylated Pyrrolidines by Catalyst-Tuned Regio- and Enantioselective C(sp 3)-C(sp 3) Coupling. J Am Chem Soc 2023. [PMID: 37307532 DOI: 10.1021/jacs.3c03900] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Novel-substituted pyrrolidine derivatives are widely used in drugs and bioactive molecules. The efficient synthesis of these valuable skeletons, especially enantiopure derivatives, is still recognized as a key bottleneck to overcome in chemical synthesis. Herein, we report a highly efficient catalyst-tuned regio- and enantioselective hydroalkylation reaction for the divergent synthesis of chiral C2- and C3-alkylated pyrrolidines through desymmetrization of the readily available 3-pyrrolines. The catalytic system consists of CoBr2 with a modified bisoxazoline (BOX) ligand, which can achieve the asymmetric C(sp3)-C(sp3) coupling via the distal stereocontrol, providing a series of C3-alkylated pyrrolidines in high efficiency. Moreover, the nickel catalytic system allows the enantioselective hydroalkylation to synthesize the C2-alkylated pyrrolidines through the tandem alkene isomerization/hydroalkylation reaction. This divergent method uses readily available catalysts, chiral BOX ligands, and reagents, delivering enantioenriched 2-/3-alkyl substituted pyrrolidines with excellent regio- and enantioselectivity (up to 97% ee). We also demonstrate the compatibility of this transformation with complex substrates derived from a series of drugs and bioactive molecules in good efficiency, which offers a distinct entry to more functionalized chiral N-heterocycles.
Collapse
Affiliation(s)
- Xuchao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Jing Xue
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| |
Collapse
|
35
|
Zhang M, Lee PS, Allais C, Singer RA, Morken JP. Desymmetrization of Vicinal Bis(boronic) Esters by Enantioselective Suzuki-Miyaura Cross-Coupling Reaction. J Am Chem Soc 2023; 145:10.1021/jacs.3c01571. [PMID: 37023255 PMCID: PMC10556193 DOI: 10.1021/jacs.3c01571] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
The development of an enantioselective catalytic Suzuki-Miyaura reaction that applies to meso 1,2-diborylcycloalkanes is described. This reaction provides a modular route to enantiomerically enriched substituted carbocycles and heterocycles that retain a synthetically versatile boronic ester. With appropriately constructed substrates, compounds bearing additional stereogenic centers and fully substituted carbon atoms can be generated in a straightforward fashion. Preliminary mechanistic experiments suggest that substrate activation arises from the cooperative effect of vicinal boronic esters during the transmetalation step.
Collapse
Affiliation(s)
- Mingkai Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Paul S. Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Christophe Allais
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Robert A. Singer
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - James P. Morken
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
36
|
Yu ZL, Cheng YF, Liu JR, Yang W, Xu DT, Tian Y, Bian JQ, Li ZL, Fan LW, Luan C, Gao A, Gu QS, Liu XY. Cu(I)-Catalyzed Chemo- and Enantioselective Desymmetrizing C-O Bond Coupling of Acyl Radicals. J Am Chem Soc 2023; 145:6535-6545. [PMID: 36912664 DOI: 10.1021/jacs.3c00671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Transition-metal-catalyzed enantioselective functionalization of acyl radicals has so far not been realized, probably due to their relatively high reactivity, which renders the chemo- and stereocontrol challenging. Herein, we describe Cu(I)-catalyzed enantioselective desymmetrizing C-O bond coupling of acyl radicals. This reaction is compatible with (hetero)aryl and alkyl aldehydes and, more importantly, displays a very broad scope of challenging alcohol substrates, such as 2,2-disubstituted 1,3-diols, 2-substituted-2-chloro-1,3-diols, 2-substituted 1,2,3-triols, 2-substituted serinols, and meso primary 1,4-diols, providing enantioenriched esters characterized by challenging acyclic tetrasubstituted carbon stereocenters. Partnered by one- or two-step follow-up transformations, this reaction provides a convenient and practical strategy for the rapid preparation of chiral C3 building blocks from readily available alcohols, particularly the industrially relevant glycerol. Mechanistic studies supported the proposed C-O bond coupling of acyl radicals.
Collapse
Affiliation(s)
- Zhang-Long Yu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yong-Feng Cheng
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ji-Ren Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wu Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dan-Tong Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Tian
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun-Qian Bian
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Li-Wen Fan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cheng Luan
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ang Gao
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
37
|
Kučera R, Ellis SR, Yamazaki K, Hayward Cooke J, Chekshin N, Christensen KE, Hamlin TA, Dixon DJ. Enantioselective Total Synthesis of (-)-Himalensine A via a Palladium and 4-Hydroxyproline Co-catalyzed Desymmetrization of Vinyl-bromide-tethered Cyclohexanones. J Am Chem Soc 2023; 145:5422-5430. [PMID: 36820616 PMCID: PMC9999414 DOI: 10.1021/jacs.2c13710] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Herein, we describe the convergent enantioselective total synthesis of himalensine A in 18 steps, enabled by a highly enantio- and diastereoselective construction of the morphan core via a palladium/hydroxy proline co-catalyzed desymmetrization of vinyl-bromide-tethered cyclohexanones. The reaction pathway was illuminated by density functional theory calculations, which support an intramolecular Heck reaction of an in situ-generated enamine intermediate, where exquisite enantioselectivity arises from intramolecular carboxylate coordination to the vinyl palladium species in the rate- and enantio-determining carbopalladation steps. The reaction tolerates diverse N-derivatives, all-carbon quaternary centers, and trisubstituted olefins, providing access to molecular scaffolds found in a range of complex natural products. Following large-scale preparation of a key substrate and installation of a β-substituted enone moiety, the rapid construction of himalensine A was achieved using a highly convergent strategy based on an amide coupling/Michael addition/allylation/ring-closing metathesis sequence which allowed the introduction of three of the five rings in only three synthetic steps (after telescoping). Moreover, our strategy provides a new enantioselective access to a known tetracyclic late-stage intermediate that has been used previously in the synthesis of many Daphniphyllum alkaloids.
Collapse
Affiliation(s)
- Roman Kučera
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Sam R Ellis
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Ken Yamazaki
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.,Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), and Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, Amsterdam 1081 HV, The Netherlands
| | - Jack Hayward Cooke
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Nikita Chekshin
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Kirsten E Christensen
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Trevor A Hamlin
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), and Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, Amsterdam 1081 HV, The Netherlands
| | - Darren J Dixon
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
38
|
de Figueiredo TZP, Voll FAP, Krieger N, Mitchell DA. Lipase-catalyzed two-step transesterification of diols: estimation of selectivities. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
39
|
Cu-catalysed enantioselective radical heteroatomic S-O cross-coupling. Nat Chem 2023; 15:395-404. [PMID: 36575341 DOI: 10.1038/s41557-022-01102-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/27/2022] [Indexed: 12/29/2022]
Abstract
The transition-metal-catalysed cross-coupling reaction has established itself as one of the most reliable and practical synthetic tools for the efficient construction of carbon-carbon/heteroatom (p-block elements other than carbon) bonds in both racemic and enantioselective manners. In contrast, development of the corresponding heteroatom-heteroatom cross-couplings has so far remained elusive, probably due to the under-investigated and often challenging heteroatom-heteroatom reductive elimination. Here we demonstrate the use of single-electron reductive elimination as a strategy for developing enantioselective S-O coupling under Cu catalysis, based on both experimental and theoretical results. The reaction manifests its synthetic potential by the ready preparation of challenging chiral alcohols featuring congested stereocentres, the expedient valorization of the biomass-derived feedstock glycerol, and the remarkable catalytic 4,6-desymmetrization of inositol. These results demonstrate the potential of enantioselective radical heteroatomic cross-coupling as a general chiral heteroatom-heteroatom formation strategy.
Collapse
|
40
|
d’Aleman A, Gayraud O, Fressigné C, Petit E, Bailly L, Maddaluno J, De Paolis M. Organocatalyzed enantio- and diastereoselective isomerization of prochiral 1,3-cyclohexanediones into nonalactones bearing distant stereocenters. Chem Sci 2023; 14:2107-2113. [PMID: 36845928 PMCID: PMC9945243 DOI: 10.1039/d2sc06842g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/27/2023] [Indexed: 01/30/2023] Open
Abstract
The lactonization of 2-(2-nitrophenyl)-1,3-cyclohexanediones containing an alcohol side chain and up to three distant prochiral elements is reported by isomerization under the mediation of simple organocatalysts such as quinidine. Through a process of ring expansion, strained nonalactones and decalactone are produced with up to three stereocenters in high er and dr (up to 99 : 1). Distant groups, including alkyl, aryl, carboxylate and carboxamide moieties, were examined.
Collapse
|
41
|
Lu CJ, Xu Q, Feng J, Liu RR. The Asymmetric Buchwald-Hartwig Amination Reaction. Angew Chem Int Ed Engl 2023; 62:e202216863. [PMID: 36535894 DOI: 10.1002/anie.202216863] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Over the past few decades, the Buchwald-Hartwig reaction has emerged as a powerful tool for forging C-N bonds, and has been vital to the pharmaceuticals, materials, and catalysis fields. However, asymmetric Buchwald-Hartwig amination reactions for constructing centered chirality, planar chirality, and axial chirality remain in their infancy owing to limited substrate scope and laggard ligand design. The recent surge in interest in the synthesis of C-N/N-N atropisomers, has witnessed a renaissance in asymmetric Buchwald-Hartwig amination chemistry as the first practical protocol for the preparation of C-N atropisomers. This review highlights reported asymmetric Buchwald-Hartwig amination protocols and provides a brief overview of their chemical practicality.
Collapse
Affiliation(s)
- Chuan-Jun Lu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
| | - Qi Xu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
| | - Jia Feng
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
| | - Ren-Rong Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308, Qingdao, 266071, China
| |
Collapse
|
42
|
Yang PJ, Chai Z. Catalytic enantioselective desymmetrization of meso-aziridines. Org Biomol Chem 2023; 21:465-478. [PMID: 36508282 DOI: 10.1039/d2ob01935c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
As a type of readily available small strained-ring heterocycle, meso-aziridines may undergo catalytic desymmetrizing transformations to empower the rapid construction of diverse nitrogen-containing structures bearing contiguous stereocenters, which have great relevance in natural product synthesis, drug development and the design and synthesis of chiral catalysts/ligands for asymmetric catalysis. This review outlines the advances achieved in the catalytic asymmetric desymmetrization of meso aziridines and highlights some promising avenues for further work in this realm.
Collapse
Affiliation(s)
- Pei-Jun Yang
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Middle Beijing Road, Wuhu, Anhui 241000, China.,MOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China.
| | - Zhuo Chai
- MOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China.
| |
Collapse
|
43
|
Cai M, Ma J, Wu Q, Lin A, Yao H. Enantioselective Syntheses of 2-Azabicyclo[2.2.1]heptanes via Brønsted Acid Catalyzed Ring-Opening of meso-Epoxides. Org Lett 2022; 24:8791-8795. [PMID: 36414324 DOI: 10.1021/acs.orglett.2c03529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A chiral phosphoric acid-catalyzed ring-opening of meso-epoxides was developed. A range of 2-azabicyclo[2.2.1]heptanes were obtained in high yields with excellent enantioselectivities. In addition, the hydroxyl and amide groups in the products provided handles for further derivatization.
Collapse
Affiliation(s)
- Min Cai
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jiao Ma
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Qimin Wu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
44
|
Nie X, Ye C, Ivlev SI, Meggers E. Nitrene-Mediated C-H Oxygenation: Catalytic Enantioselective Formation of Five-Membered Cyclic Organic Carbonates. Angew Chem Int Ed Engl 2022; 61:e202211971. [PMID: 36184573 PMCID: PMC9827974 DOI: 10.1002/anie.202211971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Indexed: 11/06/2022]
Abstract
The synthesis of non-racemic 5-membered cyclic carbonates from abundant alcohols is reported. Conversion of the alcohol into an azanyl carbonate is followed by a chiral-at-ruthenium catalyzed cyclization to provide chiral cyclic carbonates in yields of up to 95 % and with up to 99 % ee. This new synthetic method is proposed to proceed through a nitrene-mediated intramolecular C(sp3 )-H oxygenation which includes an unusual 1,7-hydrogen atom transfer within a ruthenium nitrene intermediate. The method is applicable to the synthesis of non-racemic chiral mono-, di- and trisubstituted cyclic alkylene carbonates.
Collapse
Affiliation(s)
- Xin Nie
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Chen‐Xi Ye
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Sergei I. Ivlev
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Eric Meggers
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| |
Collapse
|
45
|
Ren BH, Teng YQ, Wang SN, Wang S, Liu Y, Ren WM, Lu XB. Mechanistic Basis for the High Enantioselectivity and Activity in the Multichiral Bimetallic Complex-Mediated Enantioselective Copolymerization of meso-Epoxides. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bai-Hao Ren
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Yong-Qiang Teng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Si-Nuo Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Shang Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Ye Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Wei-Min Ren
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
46
|
Qu H, Liang XS, Wang WJ, Zhao XH, Deng YH, An XT, Chu WD, Zhang XZ, Fan CA. Catalytic Enantioselective Desymmetrization of Prochiral Triacylamines via Pseudopeptidic Guanidine–Guanidinium Catalysis. Org Lett 2022; 24:6851-6856. [DOI: 10.1021/acs.orglett.2c02785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hu Qu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Xin-Shen Liang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Wen-Juan Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Xian-He Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Yu-Hua Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research and Development of Natural Products; School of Chemical Science and Technology, Yunnan University, No. 2 Cuihu North Road, Kunming 650091, China
| | - Xian-Tao An
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Wen-Dao Chu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Xiang-Zhi Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Chun-An Fan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| |
Collapse
|
47
|
Xu P, Shen C, Xu A, Low K, Huang Z. Desymmetric Cyanosilylation of Acyclic 1,3‐Diketones. Angew Chem Int Ed Engl 2022; 61:e202208443. [DOI: 10.1002/anie.202208443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Pan Xu
- State Key Laboratory of Synthetic Chemistry Department of Chemistry University of Hong Kong Hong Kong China
| | - Chang Shen
- State Key Laboratory of Synthetic Chemistry Department of Chemistry University of Hong Kong Hong Kong China
| | - Aiqing Xu
- State Key Laboratory of Synthetic Chemistry Department of Chemistry University of Hong Kong Hong Kong China
| | - Kam‐Hung Low
- State Key Laboratory of Synthetic Chemistry Department of Chemistry University of Hong Kong Hong Kong China
| | - Zhongxing Huang
- State Key Laboratory of Synthetic Chemistry Department of Chemistry University of Hong Kong Hong Kong China
| |
Collapse
|
48
|
Liu H, Lau VHM, Xu P, Chan TH, Huang Z. Diverse synthesis of α-tertiary amines and tertiary alcohols via desymmetric reduction of malonic esters. Nat Commun 2022; 13:4759. [PMID: 35963867 PMCID: PMC9376102 DOI: 10.1038/s41467-022-32560-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/03/2022] [Indexed: 11/27/2022] Open
Abstract
Amines and alcohols with a fully substituted α-carbon are structures of great value in organic synthesis and drug discovery. While conventional methods towards these motifs often rely on enantioselective carbon-carbon or carbon-heteroatom bond formation reactions, a desymmetric method is developed here by selectively hydrosilylating one of the esters of easily accessible α-substituted α-amino- and -oxymalonic esters. The desymmetrization is enabled by a suite of dinuclear zinc catalysts with pipecolinol-derived tetradentate ligands and can accommodate a diverse panel of heteroatom substituents, including secondary amides, tertiary amines, and ethers of different sizes. The polyfunctionalized reduction products, in return, have provided expeditious approaches to enantioenriched nitrogen- and oxygen-containing molecules, including dipeptides, vitamin analogs, and natural metabolites. Chiral α-tertiary amines and tertiary alcohols are prevalent in bioactive molecules yet challenging targets to access. Here, the authors provide a dinuclear zinc-catalyzed desymmetric approach based on readily available malonic esters.
Collapse
Affiliation(s)
- Haichao Liu
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Vincent Ho Man Lau
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Pan Xu
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Tsz Hin Chan
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Zhongxing Huang
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
49
|
Bolivar JM, Woodley JM, Fernandez-Lafuente R. Is enzyme immobilization a mature discipline? Some critical considerations to capitalize on the benefits of immobilization. Chem Soc Rev 2022; 51:6251-6290. [PMID: 35838107 DOI: 10.1039/d2cs00083k] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enzyme immobilization has been developing since the 1960s and although many industrial biocatalytic processes use the technology to improve enzyme performance, still today we are far from full exploitation of the field. One clear reason is that many evaluate immobilization based on only a few experiments that are not always well-designed. In contrast to many other reviews on the subject, here we highlight the pitfalls of using incorrectly designed immobilization protocols and explain why in many cases sub-optimal results are obtained. We also describe solutions to overcome these challenges and come to the conclusion that recent developments in material science, bioprocess engineering and protein science continue to open new opportunities for the future. In this way, enzyme immobilization, far from being a mature discipline, remains as a subject of high interest and where intense research is still necessary to take full advantage of the possibilities.
Collapse
Affiliation(s)
- Juan M Bolivar
- FQPIMA group, Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, 28040, Spain
| | - John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis. ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC Cantoblanco, Madrid 28049, Spain. .,Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
50
|
Xu P, Shen C, Xu A, Low KH, Huang Z. Desymmetric Cyanosilylation of Acyclic 1,3‐Diketones. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pan Xu
- University of Hong Kong Department of Chemistry HONG KONG
| | - Chang Shen
- University of Hong Kong Department of Chemistry HONG KONG
| | - Aiqing Xu
- University of Hong Kong Department of Chemistry HONG KONG
| | - Kam-Hung Low
- University of Hong Kong Department of Chemistry HONG KONG
| | - Zhongxing Huang
- University of Hong Kong Chemistry RM 608 Chong Yuet Ming Chemistry Building na Hong Kong HONG KONG
| |
Collapse
|