1
|
Cao Y, Niu W, Guo J, Guo J, Liu H, Liu H, Xian M. Production of Optically Pure ( S)-3-Hydroxy-γ-butyrolactone from d-Xylose Using Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20167-20176. [PMID: 38088131 DOI: 10.1021/acs.jafc.3c06589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Biocatalysis has advantages in asymmetric synthesis due to the excellent stereoselectivity of enzymes. The present study established an efficient biosynthesis pathway for optically pure (S)-3-hydroxy-γ-butyrolactone [(S)-3HγBL] production using engineered Escherichia coli. We mimicked the 1,2,4-butanetriol biosynthesis route and constructed a five-step pathway consisting of d-xylose dehydrogenase, d-xylonolactonase, d-xylonate dehydratase, 2-keto acid decarboxylase, and aldehyde dehydrogenase. The engineered strain harboring the five enzymes could convert d-xylose to 3HγBL with glycerol as the carbon source. Stereochemical analysis by chiral GC proved that the microbially synthesized product was a single isomer, and the enantiomeric excess (ee) value reached 99.3%. (S)-3HγBL production was further enhanced by disrupting the branched pathways responsible for d-xylose uptake and intermediate reduction. Fed-batch fermentation of the best engineered strain showed the highest (S)-3HγBL titer of 3.5 g/L. The volumetric productivity and molar yield of (S)-3HγBL on d-xylose reached 50.6 mg/(L·h) and 52.1%, respectively. The final fermentation product was extracted, purified, and confirmed by NMR. This process utilized renewable d-xylose as the feedstock and offered an alternative approach for the production of the valuable chemical.
Collapse
Affiliation(s)
- Yujin Cao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Wei Niu
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Jing Guo
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Hui Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Huizhou Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| |
Collapse
|
2
|
Wang J, Shen X, Jain R, Wang J, Yuan Q, Yan Y. Establishing a novel biosynthetic pathway for the production of 3,4-dihydroxybutyric acid from xylose in Escherichia coli. Metab Eng 2017; 41:39-45. [DOI: 10.1016/j.ymben.2017.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/20/2017] [Accepted: 03/22/2017] [Indexed: 02/06/2023]
|
3
|
Cerra B, Mangiavacchi F, Santi C, Lozza AM, Gioiello A. Selective continuous flow synthesis of hydroxy lactones from alkenoic acids. REACT CHEM ENG 2017. [DOI: 10.1039/c7re00083a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The first in-flow selenium-mediated catalysis has been realized under eco-friendly conditions to convert alkenoic acids into hydroxy lactones with a high regio- and diastereo-selectivity ratio.
Collapse
Affiliation(s)
- Bruno Cerra
- Laboratory of Medicinal and Advanced Synthetic Chemistry (Lab MASC)
- Department of Pharmaceutical Sciences
- University of Perugia
- I-06122 Perugia
- Italy
| | - Francesca Mangiavacchi
- Laboratory of Medicinal and Advanced Synthetic Chemistry (Lab MASC)
- Department of Pharmaceutical Sciences
- University of Perugia
- I-06122 Perugia
- Italy
| | - Claudio Santi
- Laboratory of Medicinal and Advanced Synthetic Chemistry (Lab MASC)
- Department of Pharmaceutical Sciences
- University of Perugia
- I-06122 Perugia
- Italy
| | - Anna Maria Lozza
- Laboratory of Medicinal and Advanced Synthetic Chemistry (Lab MASC)
- Department of Pharmaceutical Sciences
- University of Perugia
- I-06122 Perugia
- Italy
| | - Antimo Gioiello
- Laboratory of Medicinal and Advanced Synthetic Chemistry (Lab MASC)
- Department of Pharmaceutical Sciences
- University of Perugia
- I-06122 Perugia
- Italy
| |
Collapse
|
4
|
Choi S, Song CW, Shin JH, Lee SY. Biorefineries for the production of top building block chemicals and their derivatives. Metab Eng 2015; 28:223-239. [PMID: 25576747 DOI: 10.1016/j.ymben.2014.12.007] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 12/27/2014] [Accepted: 12/29/2014] [Indexed: 01/11/2023]
Abstract
Due to the growing concerns on the climate change and sustainability on petrochemical resources, DOE selected and announced the bio-based top 12 building blocks and discussed the needs for developing biorefinery technologies to replace the current petroleum based industry in 2004. Over the last 10 years after its announcement, many studies have been performed for the development of efficient technologies for the bio-based production of these chemicals and derivatives. Now, ten chemicals among these top 12 chemicals, excluding the l-aspartic acid and 3-hydroxybutyrolactone, have already been commercialized or are close to commercialization. In this paper, we review the current status of biorefinery development for the production of these platform chemicals and their derivatives. In addition, current technological advances on industrial strain development for the production of platform chemicals using micro-organisms will be covered in detail with case studies on succinic acid and 3-hydroxypropionic acid as examples.
Collapse
Affiliation(s)
- Sol Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea; BioProcess Engineering Research Center, KAIST, Daejeon 305-701, Republic of Korea
| | - Chan Woo Song
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Jae Ho Shin
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea; BioProcess Engineering Research Center, KAIST, Daejeon 305-701, Republic of Korea; BioInformatics Research Center, KAIST, Daejeon 305-701, Republic of Korea; The Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, Hørsholm, Denmark.
| |
Collapse
|
5
|
Dhamankar H, Tarasova Y, Martin CH, Prather KL. Engineering E. coli for the biosynthesis of 3-hydroxy-γ-butyrolactone (3HBL) and 3,4-dihydroxybutyric acid (3,4-DHBA) as value-added chemicals from glucose as a sole carbon source. Metab Eng 2014; 25:72-81. [DOI: 10.1016/j.ymben.2014.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 04/18/2014] [Accepted: 06/09/2014] [Indexed: 10/25/2022]
|
6
|
You ZY, Liu ZQ, Zheng YG. Chemical and enzymatic approaches to the synthesis of optically pure ethyl (R)-4-cyano-3-hydroxybutanoate. Appl Microbiol Biotechnol 2013; 98:11-21. [DOI: 10.1007/s00253-013-5357-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/21/2013] [Accepted: 10/22/2013] [Indexed: 11/29/2022]
|
7
|
Lim JY, Jeon NY, Park AR, Min B, Kim BT, Park S, Lee H. Experimental and Computation Studies onCandida antarcticaLipase B-Catalyzed Enantioselective Alcoholysis of 4-Bromomethyl-β-lactone Leading to Enantiopure 4-Bromo-3-hydroxybutanoate. Adv Synth Catal 2013. [DOI: 10.1002/adsc.201200901] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
A platform pathway for production of 3-hydroxyacids provides a biosynthetic route to 3-hydroxy-γ-butyrolactone. Nat Commun 2013; 4:1414. [DOI: 10.1038/ncomms2418] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 12/19/2012] [Indexed: 11/08/2022] Open
|
10
|
Biocatalytic Properties of a Recombinant Fusarium proliferatum Lactonase with Significantly Enhanced Production by Optimal Expression in Escherichia coli. Appl Biochem Biotechnol 2009; 162:744-56. [DOI: 10.1007/s12010-009-8819-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 10/11/2009] [Indexed: 11/26/2022]
|
11
|
Uses and production of chiral 3-hydroxy-gamma-butyrolactones and structurally related chemicals. Appl Microbiol Biotechnol 2009; 84:817-28. [PMID: 19652966 DOI: 10.1007/s00253-009-2143-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 07/08/2009] [Accepted: 07/12/2009] [Indexed: 10/20/2022]
Abstract
Enantiopure (S)-3-hydroxy-gamma-butyrolactone (HGB) and its structurally related C3-C4 chemicals are an important target for chiral building blocks in synthetic organic chemistry. For the production of these compounds, more economical and practical synthetic routes are required. To date, chiral HGBs have been produced from petrochemicals and biomass, especially malic acids and carbohydrates. This report provides a short review on the production and application of enantiopure HGBs and their related compounds. Emphasis is focused mainly on synthetic routes using biocatalysis (microbial and chemoenzymatic) and application of these compounds. Biological methods have concentrated on devising different kinds of enzymes for the synthesis of the same compound as shown in the case of hydroxynitrile, a key intermediate of synthetic statins, and integrating unit processes for the optically active HGBs and 4-chloro-3-hydroxybutyrate with recombinant microorganisms expressing multiple enzymes. Chemical methods involve selective hydrogenation of carbohydrate-based starting materials. Both types of pathways will require further improvement to serve as a basis for a scalable route to HGBs and related compounds. Several of their synthetic applications are also introduced.
Collapse
|
12
|
Nishiwaki N, Maki A, Ariga M. Base Induced Chemical Conversion of 3-Carbamoyl-2-isoxazolines. J Oleo Sci 2009; 58:481-4. [DOI: 10.5650/jos.58.481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|