1
|
Sharma A, Gola AK, Pandey SK. Straightforward access to α-thiocyanoketones and thiazoles from sulfoxonium ylides. Chem Commun (Camb) 2023; 59:10247-10250. [PMID: 37458384 DOI: 10.1039/d3cc02401f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Efficient, versatile, and metal-free strategies for synthesizing α-thiocyanoketones and thiazoles from β-ketosulfoxonium ylides and ammonium thiocyanate have been described. Due to its simplicity, benign reaction conditions, excellent chemoselectivity, and high yield, this method represents a unique approach for divergent synthesis. Finally, the potential value of the developed methods is demonstrated via large-scale reactions and synthesis of Fanetizole, an anti-inflammatory drug.
Collapse
Affiliation(s)
- Ajay Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| | - Ajay Kant Gola
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| | - Satyendra Kumar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
2
|
Tvrdoňová M, Borovská B, Salayová A, Rončák R, Michalčin P, Bednáriková Z, Gažová Z. Design and synthesis of novel carbohydrate-amino acid hybrids and their antioxidant and anti-β-amyloid aggregation activity. Bioorg Chem 2023; 137:106636. [PMID: 37290376 DOI: 10.1016/j.bioorg.2023.106636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Herein we report the synthesis of new furanoid sugar amino acids and thioureas, prepared by coupling aromatic amino acids and dipeptides with isothiocyanato- functionalized ribofuranose ring. Since carbohydrate-derived structures possess many biological activities, synthesized compounds were evaluated as anti-amyloid and antioxidant agents. The anti-amyloid activity of the studied compounds was evaluated based on their potential to destroy amyloid fibrils of intrinsically disordered Aβ40 peptide and globular hen egg-white (HEW) lysozyme. The destructive efficiency of the compounds differed between the studied peptides. While the destruction activity of the compounds on the HEW lysozyme amyloid fibrils was negligible, the effect on Aβ40 amyloid fibrils was significantly higher. Furanoid sugar α-amino acid 1 and its dipeptide derivatives 8 (Trp-Trp) and 11 (Trp-Tyr) were the most potent anti-Aβ fibrils compounds. The antioxidant properties of synthesized compounds were estimated by three complementary in vitro assays (DPPH, ABTS, and FRAP). The ABTS assay was the most sensitive for assessing the radical scavenging activity of all tested compounds compared to the DPPH test. Significant antioxidant activity was detected for compounds in the group of aromatic amino acids depending on the present amino acid, with the highest activity in the case of dipeptides 11 and 12 containing the Tyr and Trp moiety. Regarding the FRAP assay, the best reducing antioxidant potential revealed Trp-containing compounds 5, 10, and 12.
Collapse
Affiliation(s)
- Monika Tvrdoňová
- Department of Organic Chemistry, Institute of Chemical Sciences, P.J. Šafárik University, Moyzesova 11, 040 01 Košice, Slovakia.
| | - Barbora Borovská
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Aneta Salayová
- Department of Chemistry, Biochemistry and Biophysics, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Róbert Rončák
- Department of Organic Chemistry, Institute of Chemical Sciences, P.J. Šafárik University, Moyzesova 11, 040 01 Košice, Slovakia
| | - Peter Michalčin
- Department of Organic Chemistry, Institute of Chemical Sciences, P.J. Šafárik University, Moyzesova 11, 040 01 Košice, Slovakia
| | - Zuzana Bednáriková
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Zuzana Gažová
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| |
Collapse
|
3
|
Qiao Z, Shao C, Gao Y, Liang K, Yin H, Chen FX. An electrophilic thiocyanation/ipso-cyclization leading to spirocyclohexadienones. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
4
|
Wojaczyńska E, Steppeler F, Iwan D, Scherrmann MC, Marra A. Synthesis and Applications of Carbohydrate-Based Organocatalysts. Molecules 2021; 26:7291. [PMID: 34885873 PMCID: PMC8659088 DOI: 10.3390/molecules26237291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/22/2022] Open
Abstract
Organocatalysis is a very useful tool for the asymmetric synthesis of biologically or pharmacologically active compounds because it avoids the use of noxious metals, which are difficult to eliminate from the target products. Moreover, in many cases, the organocatalysed reactions can be performed in benign solvents and do not require anhydrous conditions. It is well-known that most of the above-mentioned reactions are promoted by a simple aminoacid, l-proline, or, to a lesser extent, by the more complex cinchona alkaloids. However, during the past three decades, other enantiopure natural compounds, the carbohydrates, have been employed as organocatalysts. In the present exhaustive review, the detailed preparation of all the sugar-based organocatalysts as well as their catalytic properties are described.
Collapse
Affiliation(s)
- Elżbieta Wojaczyńska
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370 Wrocław, Poland
| | - Franz Steppeler
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370 Wrocław, Poland
| | - Dominika Iwan
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370 Wrocław, Poland
| | - Marie-Christine Scherrmann
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, Bâtiment 420, 91405 Orsay, France
| | - Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM-UMR 5247), Université de Montpellier, Pôle Chimie Balard Recherche, 1919 Route de Mende, 34293 Montpellier, France
| |
Collapse
|
5
|
Wang ZL, Chen J, He YH, Guan Z. Visible-Light-Mediated Additive-Free Decarboxylative Ketonization Reaction of Acrylic Acids: An Access to α-Thiocyanate Ketones. J Org Chem 2021; 86:3741-3749. [PMID: 33595302 DOI: 10.1021/acs.joc.0c02471] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Visible-light-mediated additive-free decarboxylative functionalization of acrylic acids has been developed. The reaction uses inexpensive organic dye 9,10-dicyanoanthracene as a photocatalyst and uses the ubiquitous dioxygen as both an oxygen source and an oxidant. Through this mild and environmentally friendly method, a series of important α-thiocyanate ketones can be generated from easily available acrylic acids and ammonium thiocyanate. In addition, the facile transformation of product α-thiocyanate ketones makes this method have great potential for application in organic and pharmaceutical chemistry.
Collapse
Affiliation(s)
- Zhi-Lv Wang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jie Chen
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Novel carbohydrate-based thioureas as organocatalysts for asymmetric michael addition of 1,3-dicarbonyl compounds to nitroolefins. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Meng F, Zhang H, He H, Xu N, Fang Q, Guo K, Cao S, Shi Y, Zhu Y. Copper‐Catalyzed Domino Cyclization/Thiocyanation of Unactivated Olefins: Access to SCN‐Containing Pyrazolines. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901104] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fei Meng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Honglin Zhang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Han He
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Ning Xu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Qin Fang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Kang Guo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Shujun Cao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yun Shi
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
- College of Plant ProtectionNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| |
Collapse
|
8
|
Chen YJ, He YH, Guan Z. Metal-free visible-light-promoted thiocyanation/cyclization cascade for the synthesis of thiocyanato-containing isoquinolinediones. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.04.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Zhang D, Wang H, Bolm C. Photocatalytic difunctionalisations of alkenes with N-SCN sulfoximines. Chem Commun (Camb) 2018; 54:5772-5775. [DOI: 10.1039/c8cc03178a] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reacting N-Br sulfoximines with ammonium thiocyanate leads to unprecedented sulfur reagents, which add to vinyl arenes under photocatalysis via N-centered sulfoximidoyl radicals.
Collapse
Affiliation(s)
- Duo Zhang
- Institute of Organic Chemistry
- RWTH Aachen University
- D-52074 Aachen
- Germany
| | - Han Wang
- Institute of Organic Chemistry
- RWTH Aachen University
- D-52074 Aachen
- Germany
| | - Carsten Bolm
- Institute of Organic Chemistry
- RWTH Aachen University
- D-52074 Aachen
- Germany
| |
Collapse
|
10
|
Magnetic hydroxyapatite-immobilized 1,4-diazabicyclo [2.2.2] octane as a highly efficient and eco-friendly nanocatalyst for the promotion of nucleophilic substitution reactions of benzyl halides under green conditions. REACTION KINETICS MECHANISMS AND CATALYSIS 2017. [DOI: 10.1007/s11144-017-1276-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Atabaki H, Nori-Shargh D, Momen-Heravi M. Assessing the effective factors affecting the conformational preferences and the early and late transition states of the unimolecular retro-ene decomposition reactions of ethyl cyanate, ethyl thiocyanate and ethyl selenocyanate. RSC Adv 2017. [DOI: 10.1039/c7ra00520b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The variations of Δ[(HCGAE(X3–C4weakening) – HCGAE(X3–C4strengthening)] parameters correlate well with the variations of the retro-ene decomposition reactions barrier heights going from compound1to compound3.
Collapse
Affiliation(s)
- Hooshang Atabaki
- Department of Chemistry
- College of Science
- Islamic Azad University
- Mashhad
- Iran
| | - Davood Nori-Shargh
- Department of Chemistry
- College of Science
- Islamic Azad University
- Arak
- Iran
| | | |
Collapse
|
12
|
Stereoselective synthesis of a novel branched-chain (1 S ,2 R ,6 R ,7 S )-7a-(hydroxymethyl)-1,2,6,7-tetrahydroxypyrrolizidine. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.05.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Castanheiro T, Suffert J, Donnard M, Gulea M. Recent advances in the chemistry of organic thiocyanates. Chem Soc Rev 2016; 45:494-505. [DOI: 10.1039/c5cs00532a] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this review the different methods for the preparation of organic thiocyantes and their synthetic applications are presented.
Collapse
Affiliation(s)
- Thomas Castanheiro
- Laboratoire d'Innovation Thérapeutique (UMR 7200)
- Université de Strasbourg
- CNRS
- Faculté de Pharmacie
- 67401 Illkirch-Graffenstaden
| | - Jean Suffert
- Laboratoire d'Innovation Thérapeutique (UMR 7200)
- Université de Strasbourg
- CNRS
- Faculté de Pharmacie
- 67401 Illkirch-Graffenstaden
| | - Morgan Donnard
- Laboratoire d'Innovation Thérapeutique (UMR 7200)
- Université de Strasbourg
- CNRS
- Faculté de Pharmacie
- 67401 Illkirch-Graffenstaden
| | - Mihaela Gulea
- Laboratoire d'Innovation Thérapeutique (UMR 7200)
- Université de Strasbourg
- CNRS
- Faculté de Pharmacie
- 67401 Illkirch-Graffenstaden
| |
Collapse
|
14
|
Gonda J, Maliňák D, Kováčová M, Martinková M. A convenient approach to an advanced intermediate for (+)-lactacystin synthesis. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
A compendium of cyclic sugar amino acids and their carbocyclic and heterocyclic nitrogen analogues. Amino Acids 2013; 45:613-89. [DOI: 10.1007/s00726-013-1521-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/21/2013] [Indexed: 12/19/2022]
|
16
|
Martinková M, Gonda J, Uhríková A, Raschmanová JŠ, Vilková M, Oroszová B. A stereoselective total synthesis of the HCl salts of mycestericins F, G and ent-F. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.tetasy.2012.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Martinková M, Gonda J, Uhríková A, Raschmanová JŠ, Kuchár J. An efficient synthesis of the polar part of sulfamisterin and its analogs. Carbohydr Res 2012; 352:23-36. [DOI: 10.1016/j.carres.2012.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/16/2012] [Accepted: 02/17/2012] [Indexed: 11/15/2022]
Affiliation(s)
- Miroslava Martinková
- Institute of Chemical Sciences, Department of Organic Chemistry, P.J. Šafárik University, Moyzesova 11, Sk-040 01 Košice, Slovak Republic.
| | | | | | | | | |
Collapse
|
18
|
Clayden J, Donnard M, Lefranc J, Tetlow DJ. Quaternary centres bearing nitrogen (α-tertiary amines) as products of molecular rearrangements. Chem Commun (Camb) 2011; 47:4624-39. [DOI: 10.1039/c1cc00049g] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Gonda J, Martinková M, Baur A. A short stereoselective synthesis of the protected uracil 3′-epi-polyoxin C. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.tetasy.2011.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Total synthesis of a protected form of sphingofungin E using the [3,3]-sigmatropic rearrangement of an allylic thiocyanate as the key reaction. Carbohydr Res 2010; 345:2427-37. [PMID: 20943213 DOI: 10.1016/j.carres.2010.09.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 09/08/2010] [Accepted: 09/13/2010] [Indexed: 11/22/2022]
Abstract
An approach to the stereocontrolled synthesis of the protected form of sphingofungin E (32) starting from the known protected d-glucose derivative 3 is described herein. For the construction of a tetrasubstituted carbon atom that is substituted with nitrogen, the [3,3]-sigmatropic rearrangement of thiocyanate 8 was employed. Subsequent functional group interconversions afforded the highly functionalized fragment, allylic bromide 26. Its coupling reaction with the known C(12) hydrophobic segment 2, followed by further manipulation, completed the total synthesis.
Collapse
|
21
|
Rearrangements of cyclopentadienyl cyanates, isocyanates and their thio-,seleno-, and telluro-analogs. Russ Chem Bull 2010. [DOI: 10.1007/s11172-009-0237-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Bräse S, Encinas A, Keck J, Nising CF. Chemistry and Biology of Mycotoxins and Related Fungal Metabolites. Chem Rev 2009; 109:3903-90. [DOI: 10.1021/cr050001f] [Citation(s) in RCA: 416] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stefan Bräse
- Institut für Organische Chemie,Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Arantxa Encinas
- Institut für Organische Chemie,Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Julia Keck
- Institut für Organische Chemie,Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Carl F. Nising
- Institut für Organische Chemie,Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| |
Collapse
|
23
|
Sano S, Nakao M, Takeyasu M, Yoshioka Y, Nagao Y, Kitaike S. Use of Diketopiperazines for Determining Absolute Configurations of α-Substituted Serines by 1H-NMR Spectroscopy. HETEROCYCLES 2009. [DOI: 10.3987/com-08-s(d)47] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
A novel synthetic approach to C-glycosyl-D- and L-alanines. MOLECULES (BASEL, SWITZERLAND) 2008; 13:3171-83. [PMID: 19078857 PMCID: PMC6244940 DOI: 10.3390/molecules13123171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Revised: 12/10/2008] [Accepted: 12/11/2008] [Indexed: 11/23/2022]
Abstract
C-Glycosyl-(S)- and (R)-alanines 12a and 12b were synthesized from the known β-C-glycoside 1. The nitrogen function was introduced by aza-Claisen rearrangement of the allylic thiocyanate 7, derived from the corresponding alcohol 6. The absolute configuration of the newly created chiral carbon center (C-3) was assigned by X-ray diffraction analysis of the intermediate 3(S)-isothiocyanato-d-glycero-d-galacto-decose 8a.
Collapse
|
25
|
Martinková M, Gonda J, Raschmanová J, Vojtičková M. The efficient preparation of α-substituted serine scaffolds as the chiral building blocks for the synthesis of SPT inhibitors. Tetrahedron 2007. [DOI: 10.1016/j.tet.2007.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
|