Ciesielski J, Gandon V, Frontier AJ. Cascade cyclizations of acyclic and macrocyclic alkynones: studies toward the synthesis of phomactin A.
J Org Chem 2013;
78:9541-52. [PMID:
23724905 DOI:
10.1021/jo4007514]
[Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A study of the reactivity and diastereoselectivity of the Lewis acid promoted cascade cyclizations of both acyclic and macrocyclic alkynones is described. In these reactions, a β-iodoallenolate intermediate is generated via conjugate addition of iodide to an alkynone followed by an intramolecular aldol reaction with a tethered aldehyde to afford a cyclohexenyl alcohol. The Lewis acid magnesium iodide (MgI2) was found to promote irreversible ring closure, while cyclizations using BF3·OEt2 as promoter occurred reversibly. For both acyclic and macrocyclic alkynones, high diastereoselectivity was observed in the intramolecular aldol reaction. The MgI2 protocol for cyclization was applied to the synthesis of advanced intermediates relevant to the synthesis of phomactin natural products, during which a novel transannular cation-olefin cyclization was observed. DFT calculations were conducted to analyze the mechanism of this unusual MgI2-promoted process.
Collapse