1
|
Xu D, Wang XN, Wang L, Dai L, Yang C. Investigations on the Synthesis of Chiral Ionic-Liquid-Supported Ligands and Corresponding Transition-Metal Catalysts: Strategy and Experimental Schemes. Molecules 2024; 29:5661. [PMID: 39683819 DOI: 10.3390/molecules29235661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Ionic liquids have been utilized in numerous significant applications within the field of chemistry, particularly in organic chemistry, due to their unique physical and chemical properties. In the realm of asymmetric transition-metal-catalyzed transformations, chiral ionic-liquid-supported ligands and their corresponding transition-metal complexes have facilitated these processes in unconventional solvents, especially ionic liquids and water. These innovative reaction systems enable the recycling of transition-metal catalysts while producing optically active organic molecules with comparable or even higher levels of chemo-, regio-, and stereoselectivity compared to their parent catalysts. In this short review, we aim to provide an overview of the structures of chiral ionic-liquid-supported ligands and the synthetic pathways for these ligands and catalysts. Various synthetic methodologies are demonstrated based on the conceptual frameworks of diverse chiral ionic-liquid-supported ligands. We systematically present the structures and comprehensive synthetic pathways of the chiral ionic-liquid-supported ligands and the typical corresponding transition-metal complexes that have been readily applied to asymmetric processes, categorized by their parent ligand framework. Notably, the crucial experimental procedures are delineated in exhaustive detail, with the objective of enhancing comprehension of the pivotal aspects involved in constructing chiral ionic-liquid-tagged ligands and compounds for both scholars and readers. Considering the current limitations of such ligands and catalysts, we conclude with remarks on several potential research directions for future breakthroughs in the synthesis and application of these intriguing ligands.
Collapse
Affiliation(s)
- Di Xu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Xin-Ning Wang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Li Wang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Li Dai
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
- Collaborative Innovation Center for Efficient Utilization of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Chen Yang
- Collaborative Innovation Center for Efficient Utilization of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| |
Collapse
|
2
|
Blaga AC, Tucaliuc A, Kloetzer L. Applications of Ionic Liquids in Carboxylic Acids Separation. MEMBRANES 2022; 12:771. [PMID: 36005686 PMCID: PMC9414664 DOI: 10.3390/membranes12080771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 05/26/2023]
Abstract
Ionic liquids (ILs) are considered a green viable organic solvent substitute for use in the extraction and purification of biosynthetic products (derived from biomass-solid/liquid extraction, or obtained through fermentation-liquid/liquid extraction). In this review, we analyzed the ionic liquids (greener alternative for volatile organic media in chemical separation processes) as solvents for extraction (physical and reactive) and pertraction (extraction and transport through liquid membranes) in the downstream part of organic acids production, focusing on current advances and future trends of ILs in the fields of promoting environmentally friendly products separation.
Collapse
Affiliation(s)
| | - Alexandra Tucaliuc
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, D. Mangeron 73, 700050 Iasi, Romania
| | - Lenuta Kloetzer
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, D. Mangeron 73, 700050 Iasi, Romania
| |
Collapse
|
3
|
Antimicrobial, Cytotoxic and Mutagenic Activity of Gemini QAS Derivatives of 1,4:3,6-Dianhydro-l-iditol. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030757. [PMID: 35164023 PMCID: PMC8838521 DOI: 10.3390/molecules27030757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022]
Abstract
A series of quaternary diammonium salts derivatives of 1,4:3,6-dianhydro-l-iditol were synthesized, using isommanide (1,4:3,6-dianhydro-d-mannitol) as a starting material. Both aromatic (pyridine, 4-(N,N-dimethylamino)pyridine (DMAP), (3-carboxamide)pyridine; N-methylimidazole) and aliphatic (trimethylamine, N,N-dimethylhexylamine, N,N-dimethyloctylamine, N,N-dimethyldecylamine) amines were used, giving eight gemini quaternary ammonium salts (QAS). All salts were tested for their antimicrobial activity against yeasts, Candida albicans and Candida glabrata, as well as bacterial Staphylococcus aureus and Escherichia coli reference strains. Moreover, antibacterial activity against 20 isolates of S. aureus collected from patients with skin and soft tissue infections (n = 8) and strains derived from subclinical bovine mastitis milk samples (n = 12) were evaluated. Two QAS with octyl and decyl residues exhibited antimicrobial activity, whereas those with two decyl residues proved to be the most active against the tested pathogens, with MIC of 16-32, 32, and 8 µg/mL for yeast, E. coli, and S. aureus reference and clinical strains, respectively. Only QAS with decyl residues proved to be cytotoxic in MTT assay against human keratinocytes (HaCaT), IC50 12.8 ± 1.2 μg/mL. Ames test was used to assess the mutagenic potential of QAS, and none of them showed mutagenic activity in the concentration range 4-2000 µg/plate.
Collapse
|
4
|
Correia DM, Fernandes LC, Fernandes MM, Hermenegildo B, Meira RM, Ribeiro C, Ribeiro S, Reguera J, Lanceros-Méndez S. Ionic Liquid-Based Materials for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2401. [PMID: 34578716 PMCID: PMC8471968 DOI: 10.3390/nano11092401] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022]
Abstract
Ionic liquids (ILs) have been extensively explored and implemented in different areas, ranging from sensors and actuators to the biomedical field. The increasing attention devoted to ILs centers on their unique properties and possible combination of different cations and anions, allowing the development of materials with specific functionalities and requirements for applications. Particularly for biomedical applications, ILs have been used for biomaterials preparation, improving dissolution and processability, and have been combined with natural and synthetic polymer matrixes to develop IL-polymer hybrid materials to be employed in different fields of the biomedical area. This review focus on recent advances concerning the role of ILs in the development of biomaterials and their combination with natural and synthetic polymers for different biomedical areas, including drug delivery, cancer therapy, tissue engineering, antimicrobial and antifungal agents, and biosensing.
Collapse
Affiliation(s)
- Daniela Maria Correia
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
- Centre of Chemistry, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Liliana Correia Fernandes
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
| | - Margarida Macedo Fernandes
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Bruno Hermenegildo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain;
| | - Rafaela Marques Meira
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Clarisse Ribeiro
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Sylvie Ribeiro
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
- IB-S—Institute for Research and Innovation on Bio-Sustainability, University of Minho, 4710-057 Braga, Portugal
| | - Javier Reguera
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain;
| | - Senentxu Lanceros-Méndez
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
5
|
|
6
|
Zullo V, Górecki M, Guazzelli L, Mezzetta A, Pescitelli G, Iuliano A. Exploiting isohexide scaffolds for the preparation of chiral ionic liquids tweezers. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
7
|
Separation of mandelic acid enantiomers using solid-liquid biphasic systems with chiral ionic liquids. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Affiliation(s)
- Stefan Jopp
- Department of Technical and Analytical Chemistry Institute of Chemistry University of Rostock Albert‐Einstein‐Str. 3a Rostock Germany
| |
Collapse
|
9
|
Gondal HY, Mumtaz S, Abbaskhan A, Mumtaz N, Cano I. New alkoxymethyl-functionalized pyridinium-based chiral ionic liquids: synthesis, characterization and properties. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01135-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Gaida B, Brzęczek-Szafran A. Insights into the Properties and Potential Applications of Renewable Carbohydrate-Based Ionic Liquids: A Review. Molecules 2020; 25:E3285. [PMID: 32698359 PMCID: PMC7397332 DOI: 10.3390/molecules25143285] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 11/16/2022] Open
Abstract
Carbohydrate-derived ionic liquids have been explored as bio-alternatives to conventional ionic liquids for over a decade. Since their discovery, significant progress has been made regarding synthetic methods, understanding their environmental effect, and developing perspectives on their potential applications. This review discusses the relationships between the structural properties of carbohydrate ionic liquids and their thermal, toxicological, and biodegradability characteristics in terms of guiding future designs of sugar-rich systems for targeted applications. The synthetic strategies related to carbohydrate-based ionic liquids, the most recent relevant advances, and several perspectives for possible applications spanning catalysis, biomedicine, ecology, biomass, and energy conversion are presented herein.
Collapse
Affiliation(s)
| | - Alina Brzęczek-Szafran
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, 44100 Gliwice, Poland;
| |
Collapse
|
11
|
Liedel C. Sustainable Battery Materials from Biomass. CHEMSUSCHEM 2020; 13:2110-2141. [PMID: 32212246 PMCID: PMC7318311 DOI: 10.1002/cssc.201903577] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/17/2020] [Indexed: 05/22/2023]
Abstract
Sustainable sources of energy have been identified as a possible way out of today's oil dependency and are being rapidly developed. In contrast, storage of energy to a large extent still relies on heavy metals in batteries. Especially when built from biomass-derived organics, organic batteries are promising alternatives and pave the way towards truly sustainable energy storage. First described in 2008, research on biomass-derived electrodes has been taken up by a multitude of researchers worldwide. Nowadays, in principle, electrodes in batteries could be composed of all kinds of carbonized and noncarbonized biomass: On one hand, all kinds of (waste) biomass may be carbonized and used in anodes of lithium- or sodium-ion batteries, cathodes in metal-sulfur or metal-oxygen batteries, or as conductive additives. On the other hand, a plethora of biomolecules, such as quinones, flavins, or carboxylates, contain redox-active groups that can be used as redox-active components in electrodes with very little chemical modification. Biomass-based binders can replace toxic halogenated commercial binders to enable a truly sustainable future of energy storage devices. Besides the electrodes, electrolytes and separators may also be synthesized from biomass. In this Review, recent research progress in this rapidly emerging field is summarized with a focus on potentially fully biowaste-derived batteries.
Collapse
Affiliation(s)
- Clemens Liedel
- Department Colloid ChemistryMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
12
|
Reiß M, Brietzke A, Eickner T, Stein F, Villinger A, Vogel C, Kragl U, Jopp S. Synthesis of novel carbohydrate based pyridinium ionic liquids and cytotoxicity of ionic liquids for mammalian cells. RSC Adv 2020; 10:14299-14304. [PMID: 35498491 PMCID: PMC9051878 DOI: 10.1039/d0ra01370f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/18/2020] [Indexed: 11/21/2022] Open
Abstract
The large pool of naturally occurring carbohydrates with their diversity in chirality and structure led to the idea of a systematic investigation of carbohydrate based ILs. To this end, we investigated the influence of different ether groups, mainly methyl or ethyl ether, on the secondary OH groups as well as different configurations on physical properties such as melting point, thermostability and especially the influence on cell toxicity. For this investigation we chose α- and β-methyl-, β-allyl- and β-phenyl d-glucopyranose as well as four 1-deoxy-pentoses. In order to be able to classify the results, more ionic liquids with different structural motives were examined for cytotoxicity. Here, we present data that confirm the biocompatibility of such ILs consisting of naturally occurring molecules or their derivatives. The synthesized carbohydrate based ILs were tested for their suitability as additives in coatings for medical applications such as drug-eluting balloons.
Collapse
Affiliation(s)
- Melanie Reiß
- Institute of Chemistry, University of Rostock Albert-Einstein-Straße 3a 18059 Rostock Germany
| | - Andreas Brietzke
- Institute of Biomedical Engineering, University of Rostock Friedrich-Barnewitz-Straße 4 18119 Rostock Germany
| | - Thomas Eickner
- Institute of Biomedical Engineering, University of Rostock Friedrich-Barnewitz-Straße 4 18119 Rostock Germany
| | - Florian Stein
- Institute of Chemistry, University of Rostock Albert-Einstein-Straße 3a 18059 Rostock Germany
| | - Alexander Villinger
- Institute of Chemistry, University of Rostock Albert-Einstein-Straße 3a 18059 Rostock Germany
| | - Christian Vogel
- Institute of Chemistry, University of Rostock Albert-Einstein-Straße 3a 18059 Rostock Germany
| | - Udo Kragl
- Institute of Chemistry, University of Rostock Albert-Einstein-Straße 3a 18059 Rostock Germany
| | - Stefan Jopp
- Institute of Chemistry, University of Rostock Albert-Einstein-Straße 3a 18059 Rostock Germany
| |
Collapse
|
13
|
Nemcsok T, Rapi Z, Bagi P, Bakó P. Synthesis and application of novel carbohydrate-based ammonium and triazolium salts. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1625403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Tamás Nemcsok
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Zsolt Rapi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Péter Bagi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Péter Bakó
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
14
|
Mishra R, Mishra JS, Chaubey SA. Recent Advances on Triazolium Ionic Liquids: Synthesis and Applications. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190627114321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The present review is principally focused on the triazolium ILs (TILs) and its potential applications. The major part of this review deals with the use of triazolium ILs as catalysts in asymmetric synthesis, solvents, recognition abilities, and electrolytes in electrochemical, storage devices. Influences of stereochemistry in ion conducting properties, hydrolysis of sugar baggage, Dye-Sensitized Solar Cell (DSSC) and biological activity are also discussed. Our intention in this review is to make concise compilation and investigations of the latest key achievements, broad spectrum of developments and problems within triazolium ionic-liquid. We anticipate that this communication will encourage scientific researchers and industries to exploit triazolium ILs in addressing scientific accost.
Collapse
Affiliation(s)
- Roli Mishra
- Chemistry Department, Centre for Engineering and Enterprise, Institute of Advanced Research, Koba Institutional, Area Gandhinagar, Gujarat, 382426, India
| | - Jyoti S. Mishra
- Chemistry Department, Centre for Engineering and Enterprise, Institute of Advanced Research, Koba Institutional, Area Gandhinagar, Gujarat, 382426, India
| | - Snehkrishn A. Chaubey
- Chemistry Department, Centre for Engineering and Enterprise, Institute of Advanced Research, Koba Institutional, Area Gandhinagar, Gujarat, 382426, India
| |
Collapse
|
15
|
Gomes JM, Silva SS, Reis RL. Biocompatible ionic liquids: fundamental behaviours and applications. Chem Soc Rev 2019; 48:4317-4335. [DOI: 10.1039/c9cs00016j] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The bio- and eco-friendly nature of biocompatible ionic liquids contributes to their widespread use in a wide range of fields.
Collapse
Affiliation(s)
- Joana M. Gomes
- 3B's Research Group, Biomaterials, Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- 4806-909 Guimarães
- Portugal
| | - Simone S. Silva
- 3B's Research Group, Biomaterials, Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- 4806-909 Guimarães
- Portugal
| | - Rui L. Reis
- 3B's Research Group, Biomaterials, Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
- 4806-909 Guimarães
- Portugal
| |
Collapse
|
16
|
Mumtaz S, Cano I, Mumtaz N, Abbas A, Dupont J, Gondal HY. Supramolecular interaction of non-racemic benzimidazolium based ion pairs with chiral substrates. Phys Chem Chem Phys 2018; 20:20821-20826. [PMID: 30059112 DOI: 10.1039/c8cp03881c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of novel benzimidazolium-based non-racemic ionic liquids (ILs) was synthesized from low-cost chiral terpenoid alcohols and fully characterized by the use of a wide variety of techniques, such as DSC, ESI-MS, ATR FT-IR, polarimetry as well as 1H and 13C NMR spectroscopy. The ILs were investigated as chiral shift agents for the chiral recognition of racemic mixtures of Mosher's acid potassium salt by 19F NMR spectroscopy, leading to high splitting values of the CF3 signal. Supramolecular interactions between salt and H-C2 of chiral benzimidazolium cation are responsible for the chiral recognition, as was demonstrated by experimental evidences. Indeed, the enantiomeric excess value of enantioenriched substrates depends mainly on the strength of the contact ion pairs.
Collapse
Affiliation(s)
- Salma Mumtaz
- Department of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan. and GSK Carbon Neutral Laboratory for Sustainable Chemistry, University of Nottingham, NG7 2GA, Nottingham, UK.
| | - Israel Cano
- GSK Carbon Neutral Laboratory for Sustainable Chemistry, University of Nottingham, NG7 2GA, Nottingham, UK.
| | - Nargis Mumtaz
- Department of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan.
| | - Ahmed Abbas
- H.E.J. Research Institute of Chemistry, ICCBS, University of Karachi, Karachi, 75270, Pakistan
| | - Jairton Dupont
- GSK Carbon Neutral Laboratory for Sustainable Chemistry, University of Nottingham, NG7 2GA, Nottingham, UK. and Laboratory of Molecular Catalysis, Institute of Chemistry, UFRGS, Av. Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil.
| | | |
Collapse
|
17
|
Jacolot M, Moebs-Sanchez S, Popowycz F. Diastereoselective Iridium-Catalyzed Amination of Biosourced Isohexides Through Borrowing Hydrogen Methodology. J Org Chem 2018; 83:9456-9463. [DOI: 10.1021/acs.joc.8b01162] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maïwenn Jacolot
- Université de Lyon, INSA Lyon, ICBMS, UMR 5246, CNRS - Université Lyon 1 - CPE Lyon, Bâtiment Lederer, F-69622 Villeurbanne Cedex, France
| | - Sylvie Moebs-Sanchez
- Université de Lyon, INSA Lyon, ICBMS, UMR 5246, CNRS - Université Lyon 1 - CPE Lyon, Bâtiment Lederer, F-69622 Villeurbanne Cedex, France
| | - Florence Popowycz
- Université de Lyon, INSA Lyon, ICBMS, UMR 5246, CNRS - Université Lyon 1 - CPE Lyon, Bâtiment Lederer, F-69622 Villeurbanne Cedex, France
| |
Collapse
|
18
|
Gunaratne HQN, Laaksonen T, Seddon KR, Wähälä K. 1-(+)-Dehydroabietylimidazolium Salts as Enantiomer Discriminators for NMR Spectroscopy. Aust J Chem 2017. [DOI: 10.1071/ch16545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nine new (+)-dehydroabietylimidazolium salts were synthesised and studied as chiral solvating agents for several different racemic aromatic and non-aromatic carboxylate salts. These cationic chiral solvating agents resolve racemic ionic analytes better than non-ionic ones. Bis(dehydroabietylimidazolium) bis(trifluoromethanesulfonimide) gave the best discrimination for the enantiomers of carboxylate salts. Its resolution behaviour was studied by an NMR titration experiment, which indicated 1 : 1 complexation with the racemic analyte. The dehydroabietylimidazolium salts were also useful in enantiomeric excess (ee) determinations, and for the recognition of chirality of racemic aromatic and non-aromatic α-substituted carboxylic acids.
Collapse
|
19
|
Mondal D, Sharma M, Quental MV, Tavares APM, Prasad K, Freire MG. Suitability of bio-based ionic liquids for the extraction and purification of IgG antibodies. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2016; 18:6071-6081. [PMID: 28255278 PMCID: PMC5330477 DOI: 10.1039/c6gc01482h] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In the past decade, remarkable advances in the production and use of antibodies as therapeutic drugs and in research/diagnostic fields have led to their recognition as value-added proteins. These biopharmaceuticals have become increasingly important, reinforcing the current demand for the development of more benign, scalable and cost-effective techniques for their purification. Typical polymer-polymer and polymer-salt aqueous biphasic systems (ABS) have been studied for such a goal; yet, the limited polarity range of the coexisting phases and their low selective nature still are their major drawbacks. To overcome this limitation, in this work, ABS formed by bio-based ionic liquids (ILs) and biocompatible polymers were investigated. Bio-based ILs composed of ions derived from natural sources, namely composed of the cholinium cation and anions derived from plants natural acids, have been designed, synthesized, characterized and used for the creation of ABS with polypropyleneglycol (PPG 400). The respective ternary phase diagrams were initially determined at 25 °C to infer on mixture compositions required to form aqueous systems of two phases, further applied in the extraction of pure immunoglobulin G (IgG) to identify the most promising bio-based ILs, and finally employed in the purification of IgG from complex and real matrices of rabbit serum. Remarkably, the complete extraction of IgG to the IL-rich phase was achieved in a single-step. With pure IgG a recovery yield of 100% was obtained, while with rabbit serum this value slightly decreased to ca. 85%. Nevertheless, a 58% enhancement in the IgG purity was achieved when compared with its purity in serum samples. The stability of IgG before and after extraction was also evaluated by size exclusion high-performance liquid chromatography (SE-HPLC), sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and Fourier transform infrared spectroscopy (FTIR). In most ABS formed by bio-based ILs, IgG retained its native structure, without degradation or denaturation effects, supporting thus their potential as remarkable platforms for the purification of high-cost biopharmaceuticals.
Collapse
Affiliation(s)
- Dibyendu Mondal
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mukesh Sharma
- Natural Product and Green Chemistry Division, CSIR-Central Salt & Marine Chemicals Research Institute, G. B. Marg, Bhavnagar-364002, Gujarat, India
- AcSIR-Central Salt & Marine Chemicals Research Institute, G. B. Marg, Bhavnagar-364002, Gujarat, India
| | - Maria V. Quental
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana P. M. Tavares
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Kamalesh Prasad
- Natural Product and Green Chemistry Division, CSIR-Central Salt & Marine Chemicals Research Institute, G. B. Marg, Bhavnagar-364002, Gujarat, India
- AcSIR-Central Salt & Marine Chemicals Research Institute, G. B. Marg, Bhavnagar-364002, Gujarat, India
| | - Mara G. Freire
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
20
|
Jayachandra R, Reddy SR, Balakrishna. Natural Sugars Derived Chiral Ionic Liquids for Asymmetric Michael Addition Reaction. ChemistrySelect 2016. [DOI: 10.1002/slct.201600427] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- R. Jayachandra
- Department of Chemistry; School of Advanced Sciences; VIT-University; Vellore- 632014 Tamilnadu India
| | | | - Balakrishna
- Crop Protection Division (CPC); CSIR-Indian Institute of Chemical Technology; Tarnaka Hyderabad- 500007 Telangana India
| |
Collapse
|
21
|
Singh A, Chopra HK. New benzimidazolium-based chiral ionic liquids: synthesis and application in enantioselective sodium borohydride reductions in water. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.tetasy.2016.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
22
|
Janvier M, Moebs-Sanchez S, Popowycz F. Bio-Based Amides from Renewable Isosorbide by a Direct and Atom-Economic Boric Acid Amidation Methodology. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600186] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Jayachandra R, Reddy SR. A remarkable chiral recognition of racemic Mosher's acid salt by naturally derived chiral ionic liquids using 19F NMR spectroscopy. RSC Adv 2016. [DOI: 10.1039/c6ra02792j] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new class of d-xylose derived imidazolium-based chiral ionic liquids were designed and synthesized via simple tuning approaches.
Collapse
Affiliation(s)
- R. Jayachandra
- Organic Chemistry Division
- School of Advanced Sciences
- VIT University
- Vellore-632014
- India
| | | |
Collapse
|
24
|
Pernak J, Czerniak K, Biedziak A, Marcinkowska K, Praczyk T, Erfurt K, Chrobok A. Herbicidal ionic liquids derived from renewable sources. RSC Adv 2016. [DOI: 10.1039/c6ra06703d] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new family of herbicidal ionic liquids based on d-glucose and MCPA or 2,4-D anions has been synthesized and the physicochemical, surface active and herbicidal properties of the obtained salts were characterized.
Collapse
Affiliation(s)
- Juliusz Pernak
- Department of Chemical Technology
- Poznan University of Technology
- 60-965 Poznan
- Poland
| | - Kamil Czerniak
- Department of Chemical Technology
- Poznan University of Technology
- 60-965 Poznan
- Poland
| | - Agnieszka Biedziak
- Department of Chemical Technology
- Poznan University of Technology
- 60-965 Poznan
- Poland
| | | | - Tadeusz Praczyk
- Institute of Plant Protection
- National Research Institute
- 60-318 Poznan
- Poland
| | - Karol Erfurt
- Department of Chemical Organic Technology and Petrochemistry
- Silesian University of Technology
- 44-100 Gliwice
- Poland
| | - Anna Chrobok
- Department of Chemical Organic Technology and Petrochemistry
- Silesian University of Technology
- 44-100 Gliwice
- Poland
| |
Collapse
|
25
|
Dhasaiyan P, Parekh N, Vijai Kumar Reddy T, Sandhya Rani G, Prabhavathi Devi BLA, Prasad BLV. Self-assembly of isomannide-based monoesters of C 18-fatty acids and their cellular uptake studies. RSC Adv 2016. [DOI: 10.1039/c6ra05608c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The self-assembling behavior of oleic, elaidic and stearic acid-isomannide glycolipids is revealed.
Collapse
Affiliation(s)
- Prabhu Dhasaiyan
- Physical and Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune – 411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Nimisha Parekh
- Chemical Engineering and Process Development Division
- CSIR-National Chemical Laboratory
- Pune – 411008
- India
| | - T. Vijai Kumar Reddy
- Centre for Lipid Research
- CSIR-Indian Institute of Chemical Technology
- Hyderabad – 500007
- India
| | - G. Sandhya Rani
- Centre for Lipid Research
- CSIR-Indian Institute of Chemical Technology
- Hyderabad – 500007
- India
| | | | - B. L. V. Prasad
- Physical and Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune – 411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
26
|
|
27
|
Laaksonen T, Heikkinen S, Wähälä K. Synthesis of Tertiary and Quaternary Amine Derivatives from Wood Resin as Chiral NMR Solvating Agents. Molecules 2015; 20:20873-86. [PMID: 26610454 PMCID: PMC6332576 DOI: 10.3390/molecules201119732] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/03/2015] [Accepted: 11/08/2015] [Indexed: 11/25/2022] Open
Abstract
Chiral tertiary and quaternary amine solvating agents for NMR spectroscopy were synthesized from the wood resin derivative (+)-dehydroabietylamine (2). The resolution of enantiomers of model compounds [Mosher’s acid (3) and its n-Bu4N salt (4)] (guests) by (+)-dehydroabietyl-N,N-dimethylmethanamine (5) and its ten different ammonium salts (hosts) was studied. The best results with 3 were obtained using 5 while with 4 the best enantiomeric resolution was obtained using (+)-dehydroabietyl-N,N-dimethylmethanaminium bis(trifluoromethane-sulfonimide) (6). The compounds 5 and 6 showed a 1:1 complexation behaviour between the host and guest. The capability of 5 and 6 to recognize the enantiomers of various α-substituted carboxylic acids and their n-Bu4N salts in enantiomeric excess (ee) determinations was demonstrated. A modification of the RES-TOCSY NMR pulse sequence is described, allowing the enhancement of enantiomeric discrimination when the resolution of multiplets is insufficient.
Collapse
Affiliation(s)
- Tiina Laaksonen
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, P. O. Box 55, FI-00014, Helsinki 00100, Finland.
| | - Sami Heikkinen
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, P. O. Box 55, FI-00014, Helsinki 00100, Finland.
| | - Kristiina Wähälä
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, P. O. Box 55, FI-00014, Helsinki 00100, Finland.
| |
Collapse
|
28
|
Vasiloiu M, Cervenka I, Gaertner P, Weil M, Schröder C, Bica K. Amino alcohol-derived chiral ionic liquids: structural investigations toward chiral recognition. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.tetasy.2015.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Eckert PK, Golz C, Degen P, Werner C, Rehage H, Strohmann C. Exploring the synthesis of a new group of chiral ammonium salts with specific configurations at the stereogenic nitrogen centers. Chemistry 2014; 20:3268-72. [PMID: 24615716 DOI: 10.1002/chem.201304433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Indexed: 11/09/2022]
Abstract
A group of new chiral dications with a fixed, specific configuration at the stereogenic nitrogen center was created. Stereoselective synthesis and recrystallization give the diastereomerically and enantiomerically pure dications, including a chiral amphiphile with surface-active properties.
Collapse
Affiliation(s)
- Prisca K Eckert
- Anorganische Chemie, Technische Universität Dortmund (Germany), Fax: (+49) 231 755 3797
| | | | | | | | | | | |
Collapse
|
30
|
Ferlin N, Gatard S, Van Nhien AN, Courty M, Bouquillon S. Click reactions as a key step for an efficient and selective synthesis of D-xylose-based ILs. Molecules 2013; 18:11512-25. [PMID: 24048284 PMCID: PMC6270402 DOI: 10.3390/molecules180911512] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/07/2013] [Accepted: 09/10/2013] [Indexed: 12/05/2022] Open
Abstract
d-Xylose-based ionic liquids have been prepared from d-xylose following a five steps reaction sequence, the key step being a click cycloaddition. These ionic liquids (ILs) have been characterized through classical analytical methods (IR, NMR, mass spectroscopy, elemental analysis) and their stability constants, Tg and Tdec, were also determined. Considering their properties and their hydrophilicity, these compounds could be alternative solvents for chemical applications under mild conditions.
Collapse
Affiliation(s)
- Nadège Ferlin
- Institut de Chimie Moléculaire de Reims, UMR CNRS 6229, Université de Reims Champagne-Ardenne, Boîte 44, B.P. 1039, Reims F-51687, France; E-Mails: (N.F.); (S.G.)
| | - Sylvain Gatard
- Institut de Chimie Moléculaire de Reims, UMR CNRS 6229, Université de Reims Champagne-Ardenne, Boîte 44, B.P. 1039, Reims F-51687, France; E-Mails: (N.F.); (S.G.)
| | - Albert Nguyen Van Nhien
- Laboratoire des Glucides FRE 3517, Université de Picardie Jules Verne, UFR des Sciences, 33 rue Saint Leu, Amiens Cedex 1 80039, France; E-Mail:
| | - Matthieu Courty
- Laboratoire de Réactivité et de Chimie des Solides UMR CNRS 7314, Université de Picardie Jules Verne, UFR des Sciences, 33 rue Saint Leu, Amiens Cedex 1 80039, France; E-Mail:
| | - Sandrine Bouquillon
- Institut de Chimie Moléculaire de Reims, UMR CNRS 6229, Université de Reims Champagne-Ardenne, Boîte 44, B.P. 1039, Reims F-51687, France; E-Mails: (N.F.); (S.G.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-3-2691-8973; Fax: +33-3-2691-3166
| |
Collapse
|
31
|
Heckel T, Winkel A, Wilhelm R. Chiral ionic liquids based on nicotine for the chiral recognition of carboxylic acids. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.tetasy.2013.07.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Uccello-Barretta G, Balzano F. Chiral NMR Solvating Additives for Differentiation of Enantiomers. Top Curr Chem (Cham) 2013; 341:69-131. [DOI: 10.1007/128_2013_445] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Payagala T, Armstrong DW. Chiral ionic liquids: a compendium of syntheses and applications (2005-2012). Chirality 2011; 24:17-53. [PMID: 22144292 DOI: 10.1002/chir.21975] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 09/30/2011] [Indexed: 11/07/2022]
Abstract
In recent years, the field of chiral ionic liquids (CILs) has undergone exponential growth. As the technology has advanced, new ways of synthesizing stable and structurally diverse ionic liquids have been established. This has led to heretofore unknown applications of CILs as well as in improving efficiency of previously identified applications. In this review article we have compiled a comprehensive database containing structures and physical properties of notable CILs that have been synthesized during the last 6 years. Their applications in the fields of asymmetric organic synthesis, spectroscopy, and chromatography are also illustrated. This is an expansion of our previous review, which covered the literature before 2005.
Collapse
Affiliation(s)
- Tharanga Payagala
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, USA
| | | |
Collapse
|
34
|
Imidazolinium sulfonate and sulfamate zwitterions as chiral solvating agents for enantiomeric excess calculations. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.tetasy.2011.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
35
|
Gomes da Silva MDR, Pereira MMA. New chiral imidazolium ionic liquids from isomannide. Carbohydr Res 2010; 346:197-202. [PMID: 21185013 DOI: 10.1016/j.carres.2010.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 11/10/2010] [Accepted: 11/15/2010] [Indexed: 11/17/2022]
Abstract
New chiral bis and mono-imidazolium ionic liquids derived from isomannide were synthesized. The structural features of the chiral organic cations impart a special arrangement of the chiral cavity. The new chiral chloride salts of isomannide derivatives are pivotal compounds for the synthesis of different organic ionic liquids. After metathesis different anions were associated to the chiral cations providing a new class of chiral ionic liquids.
Collapse
Affiliation(s)
- M D R Gomes da Silva
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | |
Collapse
|
36
|
Le TT, Guillarme S, Saluzzo C. New class of β-aminoalcohol ligands derived from isosorbide and isomannide: application in hydrogen transfer reduction of prochiral ketones. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.09.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Novel chiral ammonium ionic liquids as efficient organocatalysts for asymmetric Michael addition of aldehydes to nitroolefins. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.05.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Kumar V, Talisman IJ, Malhotra SV. Application of Halide Molten Salts as Novel Reaction Media for O-Glycosidic Bond Formation. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000188] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Development of a Universal Method Based on Ionic Liquids for Determination of Enantiomeric Compositions of Pharmaceutical Products. ACTA ACUST UNITED AC 2010. [DOI: 10.1021/bk-2010-1038.ch004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
40
|
Abstract
Aiming to develop environmentally compatible chemical syntheses, the replacement of traditional organic solvents with ionic liquids (ILs) has attracted considerable attention. ILs are special molten salts with melting points below 100 degrees C that are typically constituted of organic cations (imidazolium, pyridinium, sulfonium, phosphonium, etc.) and inorganic anions. Due to their ionic nature, they are endowed with high chemical and thermal stability, good solvent properties, and non-measurable vapor pressure. Although the recovery of unaltered ILs and recycling partly compensate their rather high cost, it is important to develop new synthetic approaches to less expensive and environmentally sustainable ILs based on renewable raw materials. In fact, most of these alternative solvents are still prepared starting from fossil feedstocks. Until now, only a limited number of ILs have been prepared from renewable sources. Surprisingly, the most available and inexpensive raw material, i.e., carbohydrates, has been hardly exploited in the synthesis of ILs. In 2003 imidazolium-based ILs were prepared from o-fructose and used as solvents in Mizoroki-Heck and Diels-Alder reactions. Later on, the first chiral ILs derived from sugars were prepared from methyl D-glucopyranoside. In the same year, a family of new chiral ILs, obtained from commercial isosorbide (dianhydro-D-glucitol), was described. A closely related approach was followed by other researchers to synthesize mono- and bis-ammonium ILs from isomannide (dianhydro-D-mannitol). Finally, a few ILs bearing a pentofuranose unit as the chiral moiety were prepared using sugar phosphates as glycosyl donors and 1-methylimidazole as the acceptor.
Collapse
|
41
|
Yu W, Zhang H, Zhang L, Zhou X. A Facile Strategy to Tune the Chiral Recognition Capabilities of Chiral Ionic Liquids by Changing Achiral Alkyl Chain. Aust J Chem 2010. [DOI: 10.1071/ch09333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A new series of chiral ionic liquids, utilizing cations derived from l-proline, have been synthesized in multi-gram scale, their specific rotations and chiral recognition capability can be adjusted by the alkylation of l-proline.
Collapse
|
42
|
Schulz PS, Schneiders K, Wasserscheid P. Aggregation behaviour of chiral ionic liquids. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.tetasy.2009.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Li M, Gardella J, Bwambok DK, El-Zahab B, de Rooy S, Cole M, Lowry M, Warner IM. Combinatorial Approach to Enantiomeric Discrimination: Synthesis and 19F NMR Screening of a Chiral Ionic Liquid-Modified Silane Library. ACTA ACUST UNITED AC 2009; 11:1105-14. [DOI: 10.1021/cc900113p] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Min Li
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, and Department of Chemistry and Physics, Louisiana State University—Shreveport, Shreveport, Louisiana 71105
| | - Jerry Gardella
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, and Department of Chemistry and Physics, Louisiana State University—Shreveport, Shreveport, Louisiana 71105
| | - David K. Bwambok
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, and Department of Chemistry and Physics, Louisiana State University—Shreveport, Shreveport, Louisiana 71105
| | - Bilal El-Zahab
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, and Department of Chemistry and Physics, Louisiana State University—Shreveport, Shreveport, Louisiana 71105
| | - Sergio de Rooy
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, and Department of Chemistry and Physics, Louisiana State University—Shreveport, Shreveport, Louisiana 71105
| | - Marsha Cole
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, and Department of Chemistry and Physics, Louisiana State University—Shreveport, Shreveport, Louisiana 71105
| | - Mark Lowry
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, and Department of Chemistry and Physics, Louisiana State University—Shreveport, Shreveport, Louisiana 71105
| | - Isiah M. Warner
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, and Department of Chemistry and Physics, Louisiana State University—Shreveport, Shreveport, Louisiana 71105
| |
Collapse
|
44
|
Nguyen Van Buu O, Aupoix A, Vo-Thanh G. Synthesis of novel chiral imidazolium-based ionic liquids derived from isosorbide and their applications in asymmetric aza Diels–Alder reaction. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.01.055] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
45
|
Van Buu ON, Aupoix A, Hong NDT, Vo-Thanh G. Chiral ionic liquids derived from isosorbide: synthesis, properties and applications in asymmetric synthesis. NEW J CHEM 2009. [DOI: 10.1039/b902956g] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|