1
|
Kotha S, Kumar Gupta N, Sreevani G, Rao Panguluri N. Design, Synthesis and Late-Stage Modification of Indane-Based Peptides via [2+2+2] Cyclotrimerization. Chem Asian J 2021; 16:3649-3657. [PMID: 34510767 DOI: 10.1002/asia.202100825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/24/2021] [Indexed: 12/11/2022]
Abstract
Here, we prepared several dipeptides containing 2-aminoindane-2-carboxylic acid (Aic) and carried out further synthetic transformations. Synthesis and purification of modified peptides by using [2+2+2] cyclotrimerization is a challenging task. We are able to modify the unusual amino acids and peptide derivatives by late-stage incorporation of benzylhalo functionality. To incorporate benzylhalo moiety we used [2+2+2] cyclotrimerization in the presence of Mo(CO)6 . These halo derivatives are potential substrates for further modification by Sonogashira reaction, Suzuki-Miyaura cross-coupling, sultine formation, and the Diels-Alder reaction sequence.
Collapse
Affiliation(s)
- Sambasivarao Kotha
- Department of Chemistryme 5, Indian Institute of Technology, Bombay, Powai, 400 076, Mumbai, India
| | - Naveen Kumar Gupta
- Department of Chemistryme 5, Indian Institute of Technology, Bombay, Powai, 400 076, Mumbai, India
| | - Gaddamedi Sreevani
- Department of Chemistryme 5, Indian Institute of Technology, Bombay, Powai, 400 076, Mumbai, India
| | - Nageswara Rao Panguluri
- Department of Chemistryme 5, Indian Institute of Technology, Bombay, Powai, 400 076, Mumbai, India
| |
Collapse
|
2
|
Lubov DP, Talsi EP, Bryliakov KP. Methods for selective benzylic C–H oxofunctionalization of organic compounds. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
3
|
Xie L, Chen K, Cui H, Wan N, Cui B, Han W, Chen Y. Characterization of a Self-Sufficient Cytochrome P450 Monooxygenase from Deinococcus apachensis for Enantioselective Benzylic Hydroxylation. Chembiochem 2020; 21:1820-1825. [PMID: 32012422 DOI: 10.1002/cbic.201900691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/29/2020] [Indexed: 12/22/2022]
Abstract
A self-sufficient cytochrome P450 monooxygenase from Deinococcus apachensis (P450DA) was identified and successfully overexpressed in Escherichia coli BL21(DE3). P450DA would be a member of the CYP102D subfamily and assigned as CYP102D2 according to the phylogenetic tree and sequence alignment. Purification and characterization of the recombinant P450DA indicated both NADH and NADPH could be used by P450DA as a reducing cofactor. The recombinant E. coli (P450DA) strain was functionally active, showing excellent enantioselectivity for benzylic hydroxylation of methyl 2-phenylacetate. Further substrate scope studies revealed that P450DA is able to catalyze benzylic hydroxylation of a variety of compounds, affording the corresponding chiral benzylic alcohols in 86-99 % ee and 130-1020 total turnover numbers.
Collapse
Affiliation(s)
- Lingzhi Xie
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Ke Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Haibo Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Nanwei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Baodong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Wenyong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| |
Collapse
|
4
|
Doyon TJ, Perkins JC, Baker Dockrey SA, Romero EO, Skinner KC, Zimmerman PM, Narayan ARH. Chemoenzymatic o-Quinone Methide Formation. J Am Chem Soc 2019; 141:20269-20277. [PMID: 31840992 DOI: 10.1021/jacs.9b10474] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Generation of reactive intermediates and interception of these fleeting species under physiological conditions is a common strategy employed by Nature to build molecular complexity. However, selective formation of these species under mild conditions using classical synthetic techniques is an outstanding challenge. Here, we demonstrate the utility of biocatalysis in generating o-quinone methide intermediates with precise chemoselectivity under mild, aqueous conditions. Specifically, α-ketoglutarate-dependent non-heme iron enzymes, CitB and ClaD, are employed to selectively modify benzylic C-H bonds of o-cresol substrates. In this transformation, biocatalytic hydroxylation of a benzylic C-H bond affords a benzylic alcohol product which, under the aqueous reaction conditions, is in equilibrium with the corresponding o-quinone methide. o-Quinone methide interception by a nucleophile or a dienophile allows for one-pot conversion of benzylic C-H bonds into C-C, C-N, C-O, and C-S bonds in chemoenzymatic cascades on preparative scale. The chemoselectivity and mild nature of this platform is showcased here by the selective modification of peptides and chemoenzymatic synthesis of the chroman natural product (-)-xyloketal D.
Collapse
|
5
|
Abstract
The main purpose of this work was to discover the way to obtain pure enantiomers of indan-1-ol. The subject of the study was the ability of the plant enzyme system to reduce the carbonyl group of indan-1-one, as well as to oxidize the hydroxyl group of racemic indan-1-ol. Locally available fruit and vegetables were selected for stereoselective biotransformation. During the reduction, mainly alcohol of the S-(+)-configuration with a high enantiomeric excess (ee = 99%) was obtained. The opposite enantiomer was obtained in bioreduction with the apple and parsley. Racemic indan-1-ol was oxidized by all catalysts. The best result was obtained for the Jerusalem artichoke: Over 50% conversion was observed after 1 h, and the enantiomeric excess of unreacted R-(–)-indan1-ol was 100%.
Collapse
|
6
|
Li RJ, Li A, Zhao J, Chen Q, Li N, Yu HL, Xu JH. Engineering P450LaMO stereospecificity and product selectivity for selective C–H oxidation of tetralin-like alkylbenzenes. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01448e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Via Phe scanning based protein engineering, P450LaMO increased enantioselectivity to er 98 : 2 and product selectivity, alcohol : ketone, to ak 99 : 1.
Collapse
Affiliation(s)
- Ren-Jie Li
- State Key Laboratory of Bioreactor Engineering
- Shanghai Collaborative Innovation Center for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Aitao Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources
- Hubei Key Laboratory of Industrial Biotechnology
- College of Life Sciences
- Hubei University
- Wuhan 430062
| | - Jing Zhao
- Tianjin Institute of Industrial Biotechnology
- Chinese Academy of Sciences
- Tianjin 300308
- P. R. China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering
- Shanghai Collaborative Innovation Center for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Ning Li
- State Key Laboratory of Pulp and Paper Engineering
- College of Light Industry and Food Sciences
- South China University of Technology
- Guangzhou
- China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering
- Shanghai Collaborative Innovation Center for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering
- Shanghai Collaborative Innovation Center for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
7
|
Cui B, Yang M, Shan J, Qin L, Liu Z, Wan N, Han W, Chen Y. Chemoenzymatic synthesis of β -hydroxyl-sulfoxides by a two-step reaction of enzymatic reduction using Pseudomonas monteilii species and sulfoxidation with chiral titanium complexe. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Gabriele B, Mancuso R, Veltri L. Recent Advances in the Synthesis of Indanes and Indenes. Chemistry 2016; 22:5056-94. [DOI: 10.1002/chem.201503933] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Bartolo Gabriele
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC); Department of Chemistry and Chemical Technologies; University of Calabria; Via Pietro Bucci, 12/C 87036 Arcavacata di Rende (CS) Italy
| | - Raffaella Mancuso
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC); Department of Chemistry and Chemical Technologies; University of Calabria; Via Pietro Bucci, 12/C 87036 Arcavacata di Rende (CS) Italy
| | - Lucia Veltri
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC); Department of Chemistry and Chemical Technologies; University of Calabria; Via Pietro Bucci, 12/C 87036 Arcavacata di Rende (CS) Italy
| |
Collapse
|
9
|
Zheng D, Yang M, Zhuo J, Li K, Zhang H, Yang J, Cui B, Chen Y. Regio- and stereoselective benzylic hydroxylation to synthesize chiral tetrahydroquinolin-4-ol and tetrahydro-1H-benzo[b]azepin-5-ol with Pseudomonas plecoglossicidas. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
10
|
|
11
|
Differential degradation of bicyclics with aromatic and alicyclic rings by Rhodococcus sp. strain DK17. Appl Environ Microbiol 2011; 77:8280-7. [PMID: 21965391 DOI: 10.1128/aem.06359-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The metabolically versatile Rhodococcus sp. strain DK17 is able to grow on tetralin and indan but cannot use their respective desaturated counterparts, 1,2-dihydronaphthalene and indene, as sole carbon and energy sources. Metabolite analyses by gas chromatography-mass spectrometry and nuclear magnetic resonance spectrometry clearly show that (i) the meta-cleavage dioxygenase mutant strain DK180 accumulates 5,6,7,8-tetrahydro-1,2-naphthalene diol, 1,2-indene diol, and 3,4-dihydro-naphthalene-1,2-diol from tetralin, indene, and 1,2-dihydronaphthalene, respectively, and (ii) when expressed in Escherichia coli, the DK17 o-xylene dioxygenase transforms tetralin, indene, and 1,2-dihydronaphthalene into tetralin cis-dihydrodiol, indan-1,2-diol, and cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene, respectively. Tetralin, which is activated by aromatic hydroxylation, is degraded successfully via the ring cleavage pathway to support growth of DK17. Indene and 1,2-dihydronaphthalene do not serve as growth substrates because DK17 hydroxylates them on the alicyclic ring and further metabolism results in a dead-end metabolite. This study reveals that aromatic hydroxylation is a prerequisite for proper degradation of bicyclics with aromatic and alicyclic rings by DK17 and confirms the unique ability of the DK17 o-xylene dioxygenase to perform distinct regioselective hydroxylations.
Collapse
|
12
|
Zhang W, Tang WL, Wang DIC, Li Z. Concurrent oxidations with tandem biocatalysts in one pot: green, selective and clean oxidations of methylene groups to ketones. Chem Commun (Camb) 2011; 47:3284-6. [DOI: 10.1039/c0cc04706f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
|
14
|
Chen Y, Lie F, Li Z. Enantioselective Benzylic Hydroxylation withPseudomonas monteiliiTA-5: A Simple Method for the Syntheses of (R)-Benzylic Alcohols Containing Reactive Functional Groups. Adv Synth Catal 2009. [DOI: 10.1002/adsc.200900241] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|