1
|
Pota G, Andrés-Sanz D, Gallego M, Vitiello G, López-Gallego F, Costantini A, Califano V. Deciphering the immobilization of lipases on hydrophobic wrinkled silica nanoparticles. Int J Biol Macromol 2024; 266:131022. [PMID: 38522688 DOI: 10.1016/j.ijbiomac.2024.131022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
In this work, the adsorption of Candida antarctica B (CALB) and Rhizomucor miehei (RML) lipases into hydrophobic wrinkled silica nanoparticles (WSNs) is investigated. WSNs are hydrophobized by chemical vapor deposition. Both proteins are homogeneously distributed inside the pores of the nanoparticles, as confirmed by Transmission Electron Microscopy and Energy Dispersive X-ray measurements. The maximum enzyme load of CALB is twice that obtained for RML. Fourier Transform Infrared Spectroscopy confirms the preservation of the enzyme secondary structure after immobilization for both enzymes. Adsorption isotherms fit to a Langmuir model, resulting in a binding constant (KL) for RML 4.5-fold higher than that for CALB, indicating stronger binding for the former. Kinetic analysis reveals a positive correlation between enzyme load and RML activity unlike CALB where activity decreases along the enzyme load increases. Immobilization allows for enhancing the thermal stability of both lipases. Finally, CALB outperforms RML in the hydrolysis of ethyl-3-hydroxybutyrate. However, immobilized CALB yielded 20 % less 3-HBA than free lipase, while immobilized RML increases 3-fold the 3-HBA yield when compared with the free enzyme. The improved performance of immobilized RML can be explained due to the interfacial hyperactivation undergone by this lipase when immobilized on the superhydrophobic surface of WSNs.
Collapse
Affiliation(s)
- Giulio Pota
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Fuorigrotta, Naples, Italy
| | - Daniel Andrés-Sanz
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, San Sebastián, Spain
| | - Marta Gallego
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, San Sebastián, Spain
| | - Giuseppe Vitiello
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Fuorigrotta, Naples, Italy; CSGI, Center for Colloid and Surface Science, Sesto Fiorentino, FI, Italy
| | - Fernando López-Gallego
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| | - Aniello Costantini
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Fuorigrotta, Naples, Italy.
| | - Valeria Califano
- Institute of Science and Technology for Sustainable Energy and Mobility (STEMS), National Research Council of Italy (CNR), Viale Marconi 4, 80125 Naples, Italy
| |
Collapse
|
2
|
Han Z, Liu G, Zhang X, Li A, Dong XQ, Zhang X. Synthesis of Chiral β-Borylated Carboxylic Esters via Nickel-Catalyzed Asymmetric Hydrogenation. Org Lett 2019; 21:3923-3926. [DOI: 10.1021/acs.orglett.9b00994] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhengyu Han
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Gang Liu
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xianghe Zhang
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Anqi Li
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xiu-Qin Dong
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xumu Zhang
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
3
|
Liu G, Li A, Qin X, Han Z, Dong X, Zhang X. Efficient Access to Chiral β‐Borylated Carboxylic Esters via Rh‐Catalyzed Hydrogenation. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Gang Liu
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan, Hubei 430072 People's Republic of China
| | - Anqi Li
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan, Hubei 430072 People's Republic of China
| | - Xueyuan Qin
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan, Hubei 430072 People's Republic of China
| | - Zhengyu Han
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan, Hubei 430072 People's Republic of China
| | - Xiu‐Qin Dong
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan, Hubei 430072 People's Republic of China
| | - Xumu Zhang
- Department of Chemistry and Shenzhen Grubbs InstituteSouthern University of Science and Technology Shenzhen, Guangdong 518055 People's Republic of China
| |
Collapse
|
4
|
Lipases in asymmetric transformations: Recent advances in classical kinetic resolution and lipase–metal combinations for dynamic processes. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.08.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Neeve EC, Geier SJ, Mkhalid IAI, Westcott SA, Marder TB. Diboron(4) Compounds: From Structural Curiosity to Synthetic Workhorse. Chem Rev 2016; 116:9091-161. [PMID: 27434758 DOI: 10.1021/acs.chemrev.6b00193] [Citation(s) in RCA: 779] [Impact Index Per Article: 86.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although known for over 90 years, only in the past two decades has the chemistry of diboron(4) compounds been extensively explored. Many interesting structural features and reaction patterns have emerged, and more importantly, these compounds now feature prominently in both metal-catalyzed and metal-free methodologies for the formation of B-C bonds and other processes.
Collapse
Affiliation(s)
- Emily C Neeve
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg , Würzburg 97074, Germany
| | - Stephen J Geier
- Mount Allison University , Department of Biochemistry and Chemistry, Sackville, New Brunswick E4L 1G8, Canada
| | | | - Stephen A Westcott
- Mount Allison University , Department of Biochemistry and Chemistry, Sackville, New Brunswick E4L 1G8, Canada
| | - Todd B Marder
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg , Würzburg 97074, Germany
| |
Collapse
|
6
|
Tsai SW. Enantiopreference of Candida antarctica lipase B toward carboxylic acids: Substrate models and enantioselectivity thereof. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2014.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Biocatalysis and biotransformation in Brazil: An overview. Biotechnol Adv 2015; 33:481-510. [PMID: 25687277 DOI: 10.1016/j.biotechadv.2015.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/05/2015] [Accepted: 02/05/2015] [Indexed: 12/12/2022]
Abstract
This review presents the recent research in biocatalysis and biotransformation in Brazil. Several substrates were biotransformed by fungi, bacteria and plants. Biocatalytic deracemization of secondary alcohols, oxidation of sulfides, sp(3) CH hydroxylation and epoxidation of alkenes were described. Chemo-enzymatic resolution of racemic alcohols and amines were carried out with lipases using several substrates containing heteroatoms such as silicon, boron, selenium and tellurium. Biotransformation of nitriles by marine fungi, hydrolysis of epoxides by microorganisms of Brazilian origin and biooxidation of natural products were described. Enzymatic reactions under microwave irradiation, continuous flow, and enzymatic assays using fluorescent probes were reported.
Collapse
|
8
|
Gucma M, Gołębiewski WM, Krawczyk M. Application of chiral ligands: carbohydrates, nucleoside-lanthanides and other Lewis acid complexes to control regio- and stereoselectivity of the dipolar cycloaddition reactions of nitrile oxides and esters. RSC Adv 2015. [DOI: 10.1039/c4ra15975f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Enantioselectivity of the cycloaddition up to 99.8%.
Collapse
Affiliation(s)
- Mirosław Gucma
- Institute of Industrial Organic Chemistry
- 03-236 Warsaw
- Poland
| | | | - Maria Krawczyk
- Institute of Industrial Organic Chemistry
- 03-236 Warsaw
- Poland
| |
Collapse
|
9
|
Candida antarctica lipase B-catalyzed reactions of β-hydroxy esters: Competition of acylation and hydrolysis. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
|
11
|
Murai K, Matsushita T, Nakamura A, Hyogo N, Nakajima J, Fujioka H. Kinetic Resolution of β-Substituted Olefinic Carboxylic Acids by Asymmetric Bromolactonization. Org Lett 2013; 15:2526-9. [DOI: 10.1021/ol401007u] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Kenichi Murai
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Tomoyo Matsushita
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Akira Nakamura
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Norimichi Hyogo
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Junki Nakajima
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hiromichi Fujioka
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|