1
|
Matsumoto A, Tanaka A, Kaimori Y, Hara N, Mikata Y, Soai K. Circular dichroism spectroscopy of catalyst preequilibrium in asymmetric autocatalysis of pyrimidyl alkanol. Chem Commun (Camb) 2021; 57:11209-11212. [PMID: 34622895 DOI: 10.1039/d1cc04206h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mechanistic understanding of the asymmetric autocatalysis of pyrimidyl alkanol is a highly attractive and challenging topic due to its unique feature of amplification of enantiomeric excess. Circular dichroism spectroscopic analysis of this reaction allows monitoring of the structual changes of possible catalyst precursors in the solution state and shows characteristic temperature and solvent dependence. TD-DFT calculations suggest that these spectral changes are induced by a dimer-tetramer equilibrium of zinc alkoxides.
Collapse
Affiliation(s)
- Arimasa Matsumoto
- Department of Chemistry, Biology, and Environmental Science, Nara Women's University, Kita-Uoya Nishi-machi, Nara, 630-8506, Japan.
| | - Ayame Tanaka
- Department of Chemistry, Biology, and Environmental Science, Nara Women's University, Kita-Uoya Nishi-machi, Nara, 630-8506, Japan.
| | - Yoshiyasu Kaimori
- Department of Applied Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Natsuki Hara
- Department of Applied Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yuji Mikata
- Department of Chemistry, Biology, and Environmental Science, Nara Women's University, Kita-Uoya Nishi-machi, Nara, 630-8506, Japan.
| | - Kenso Soai
- Department of Applied Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
2
|
Buhse T, Cruz JM, Noble-Terán ME, Hochberg D, Ribó JM, Crusats J, Micheau JC. Spontaneous Deracemizations. Chem Rev 2021; 121:2147-2229. [DOI: 10.1021/acs.chemrev.0c00819] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Thomas Buhse
- Centro de Investigaciones Químicas−IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, 62209 Cuernavaca, Morelos Mexico
| | - José-Manuel Cruz
- Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas 29050, Mexico
| | - María E. Noble-Terán
- Centro de Investigaciones Químicas−IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, 62209 Cuernavaca, Morelos Mexico
| | - David Hochberg
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Carretera Ajalvir, Km. 4, 28850 Torrejón de Ardoz, Madrid Spain
| | - Josep M. Ribó
- Institut de Ciències del Cosmos (IEEC-ICC) and Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Catalunya Spain
| | - Joaquim Crusats
- Institut de Ciències del Cosmos (IEEC-ICC) and Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Catalunya Spain
| | - Jean-Claude Micheau
- Laboratoire des IMRCP, UMR au CNRS No. 5623, Université Paul Sabatier, F-31062 Toulouse Cedex, France
| |
Collapse
|
3
|
Romagnoli C, Sieng B, Amedjkouh M. Kinetic relationship in parallel autocatalytic amplifications of pyridyl alkanol and chiral trigger pyrimidyl alkanol. Chirality 2020; 32:1143-1151. [PMID: 32602567 DOI: 10.1002/chir.23256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/25/2020] [Accepted: 04/01/2020] [Indexed: 11/07/2022]
Abstract
Experimental and kinetic analysis of a chemical system combines autocatalytic amplification of 2-alkynyl-5-pyrimidyl alkanol 2 and 6-alkynyl-3-pyridyl akanol 4 in which 2 acts as a chiral trigger and 4 being the subsequent autocatalyst. Starting from a very low initial ee, both alkanols are produced with high enantiopurity in one single cycle. This provides insight into a dual nonlinear amplification of chirality observed with amplifying trigger 2 and accelerated amplification of autocatalyst 4. These kinetic studies reveal a five-fold magnitude superior amplification rates of 4 associated with trigger's enantiopurity at the outset.
Collapse
Affiliation(s)
| | - Bora Sieng
- Department of Chemistry, University of Oslo, Oslo, Norway
| | | |
Collapse
|
4
|
Possible Physical Basis of Mirror Symmetry Effect in Racemic Mixtures of Enantiomers: From Wallach’s Rule, Nonlinear Effects, B–Z DNA Transition, and Similar Phenomena to Mirror Symmetry Effects of Chiral Objects. Symmetry (Basel) 2020. [DOI: 10.3390/sym12060889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Effects associated with mirror symmetry may be underlying for a number of phenomena in chemistry and physics. Increase in the density and melting point of the 50%L/50%D collection of enantiomers of a different sign (Wallach’s rule) is probably based on a physical effect of the mirror image. The catalytic activity of metal complexes with racemic ligands differs from the corresponding complexes with enantiomers as well (nonlinear effect). A similar difference in the physical properties of enantiomers and racemate underlies L/D inversion points of linear helical macromolecules, helical nanocrystals of magnetite and boron nitride etc., B–Z DNA transition and phenomenon of mirror neurons may have a similar nature. Here we propose an explanation of the Wallach effect along with some similar chemical, physical, and biological phenomena related to mirror image.
Collapse
|
5
|
Affiliation(s)
- Donna G. Blackmond
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
6
|
Сhiral and Racemic Fields Concept for Understanding of the Homochirality Origin, Asymmetric Catalysis, Chiral Superstructure Formation from Achiral Molecules, and B-Z DNA Conformational Transition. Symmetry (Basel) 2019. [DOI: 10.3390/sym11050649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The four most important and well-studied phenomena of mirror symmetry breaking of molecules were analyzed for the first time in terms of available common features and regularities. Mirror symmetry breaking of the primary origin of biological homochirality requires the involvement of an external chiral inductor (environmental chirality). All reviewed mirror symmetry breaking phenomena were considered from that standpoint. A concept of chiral and racemic fields was highly helpful in this analysis. A chiral gravitational field in combination with a static magnetic field (Earth’s environmental conditions) may be regarded as a hypothetical long-term chiral inductor. Experimental evidences suggest a possible effect of the environmental chiral inductor as a chiral trigger on the mirror symmetry breaking effect. Also, this effect explains a conformational transition of the right-handed double DNA helix to the left-handed double DNA helix (B-Z DNA transition) as possible DNA damage.
Collapse
|
7
|
Asymmetric autocatalysis of pyrimidyl alkanol and related compounds. Self-replication, amplification of chirality and implication for the origin of biological enantioenriched chirality. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.02.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Matsumoto A, Fujiwara S, Abe T, Hara A, Tobita T, Sasagawa T, Kawasaki T, Soai K. Elucidation of the Structures of Asymmetric Autocatalyst Based on X-ray Crystallography. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20160160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
9
|
Matsumoto A, Abe T, Hara A, Tobita T, Sasagawa T, Kawasaki T, Soai K. Crystal Structure of the Isopropylzinc Alkoxide of Pyrimidyl Alkanol: Mechanistic Insights for Asymmetric Autocatalysis with Amplification of Enantiomeric Excess. Angew Chem Int Ed Engl 2015; 54:15218-21. [PMID: 26494200 PMCID: PMC4691336 DOI: 10.1002/anie.201508036] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/19/2015] [Indexed: 11/06/2022]
Abstract
Asymmetric amplification during self-replication is a key feature that is used to explain the origin of homochirality. Asymmetric autocatalysis of pyrimidyl alkanol in the asymmetric addition of diisopropylzinc to pyrimidine-5-carbaldehyde is a unique example of this phenomenon. Crystallization of zinc alkoxides of this 5-pyrimidyl alkanol and single-crystal X-ray diffraction analysis of the alkoxide crystals reveal the existence of tetramer or higher oligomer structures in this asymmetric autocatalytic system.
Collapse
Affiliation(s)
- Arimasa Matsumoto
- Department of Applied Chemistry, Tokyo University of ScienceKagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan) E-mail:
- Research Institute for Science and Technology, Tokyo University of ScienceKagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan)
| | - Takaaki Abe
- Department of Applied Chemistry, Tokyo University of ScienceKagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan) E-mail:
| | - Atsushi Hara
- Department of Applied Chemistry, Tokyo University of ScienceKagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan) E-mail:
| | - Takayuki Tobita
- Department of Applied Chemistry, Tokyo University of ScienceKagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan) E-mail:
| | - Taisuke Sasagawa
- Department of Applied Chemistry, Tokyo University of ScienceKagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan) E-mail:
| | - Tsuneomi Kawasaki
- Research Institute for Science and Technology, Tokyo University of ScienceKagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan)
- Department of Materials Science and Engineering, Faculty of Engineering, University of FukuiBunkyo, Fukui 910-8507 (Japan)
| | - Kenso Soai
- Department of Applied Chemistry, Tokyo University of ScienceKagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan) E-mail:
- Research Institute for Science and Technology, Tokyo University of ScienceKagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan)
| |
Collapse
|
10
|
Crystal Structure of the Isopropylzinc Alkoxide of Pyrimidyl Alkanol: Mechanistic Insights for Asymmetric Autocatalysis with Amplification of Enantiomeric Excess. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
Autosolvation: Architecture and Selection of Chiral Conformers in Alkylcobalt Carbonyl Molecular Clocks. Symmetry (Basel) 2014. [DOI: 10.3390/sym6030551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|