1
|
Liu W, Hu Z, Xu P, Yu B. Synthesis of Anticoagulant Pentasaccharide Fondaparinux via 3,5-Dimethyl-4-(2'-phenylethynylphenyl)phenyl Glycosides. Org Lett 2023; 25:8506-8510. [PMID: 37983186 DOI: 10.1021/acs.orglett.3c03484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Here, we disclosed a convenient procedure for the preparation of EPP [3,5-dimethyl-4-(2'-phenylethynylphenyl)phenyl] glycosides and their application to an effective synthesis of fondaparinux, the clinically approved anticoagulant heparin pentasaccharide. The use of EPP glycosides in the one-pot orthogonal glycosylation for the synthesis of heparin-like tetrasaccharides has also been achieved.
Collapse
Affiliation(s)
- Wei Liu
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Zhifei Hu
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Peng Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Biao Yu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
2
|
Wojaczyńska E, Steppeler F, Iwan D, Scherrmann MC, Marra A. Synthesis and Applications of Carbohydrate-Based Organocatalysts. Molecules 2021; 26:7291. [PMID: 34885873 PMCID: PMC8659088 DOI: 10.3390/molecules26237291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/22/2022] Open
Abstract
Organocatalysis is a very useful tool for the asymmetric synthesis of biologically or pharmacologically active compounds because it avoids the use of noxious metals, which are difficult to eliminate from the target products. Moreover, in many cases, the organocatalysed reactions can be performed in benign solvents and do not require anhydrous conditions. It is well-known that most of the above-mentioned reactions are promoted by a simple aminoacid, l-proline, or, to a lesser extent, by the more complex cinchona alkaloids. However, during the past three decades, other enantiopure natural compounds, the carbohydrates, have been employed as organocatalysts. In the present exhaustive review, the detailed preparation of all the sugar-based organocatalysts as well as their catalytic properties are described.
Collapse
Affiliation(s)
- Elżbieta Wojaczyńska
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370 Wrocław, Poland
| | - Franz Steppeler
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370 Wrocław, Poland
| | - Dominika Iwan
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370 Wrocław, Poland
| | - Marie-Christine Scherrmann
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, Bâtiment 420, 91405 Orsay, France
| | - Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM-UMR 5247), Université de Montpellier, Pôle Chimie Balard Recherche, 1919 Route de Mende, 34293 Montpellier, France
| |
Collapse
|
3
|
Maciá M, Porcar R, Martí-Centelles V, García-Verdugo E, Burguete MI, Luis SV. Rational Design of Simple Organocatalysts for the HSiCl 3 Enantioselective Reduction of (E)- N-(1-Phenylethylidene)aniline. Molecules 2021; 26:6963. [PMID: 34834055 PMCID: PMC8625272 DOI: 10.3390/molecules26226963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
Prolinamides are well-known organocatalysts for the HSiCl3 reduction of imines; however, custom design of catalysts is based on trial-and-error experiments. In this work, we have used a combination of computational calculations and experimental work, including kinetic analyses, to properly understand this process and to design optimized catalysts for the benchmark (E)-N-(1-phenylethylidene)aniline. The best results have been obtained with the amide derived from 4-methoxyaniline and the N-pivaloyl protected proline, for which the catalyzed process is almost 600 times faster than the uncatalyzed one. Mechanistic studies reveal that the formation of the component supramolecular complex catalyst-HSiCl3-substrate, involving hydrogen bonding breaking and costly conformational changes in the prolinamide, is an important step in the overall process.
Collapse
Affiliation(s)
- María Maciá
- Department of Inorganic and Organic Chemistry, Jaume I University, Av. Vicent Sos Baynat s/n, 12071 Castellón, Spain; (M.M.); (R.P.); (V.M.-C.); (M.I.B.)
| | - Raúl Porcar
- Department of Inorganic and Organic Chemistry, Jaume I University, Av. Vicent Sos Baynat s/n, 12071 Castellón, Spain; (M.M.); (R.P.); (V.M.-C.); (M.I.B.)
- Department of Organic and Bio-Organic Chemistry, Faculty of Science, UNED—Universidad Nacional de Educación a Distancia, Avenida de Esparta s/n, 28232 Las Rozas-Madrid, Spain
| | - Vicente Martí-Centelles
- Department of Inorganic and Organic Chemistry, Jaume I University, Av. Vicent Sos Baynat s/n, 12071 Castellón, Spain; (M.M.); (R.P.); (V.M.-C.); (M.I.B.)
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain
| | - Eduardo García-Verdugo
- Department of Inorganic and Organic Chemistry, Jaume I University, Av. Vicent Sos Baynat s/n, 12071 Castellón, Spain; (M.M.); (R.P.); (V.M.-C.); (M.I.B.)
| | - Maria Isabel Burguete
- Department of Inorganic and Organic Chemistry, Jaume I University, Av. Vicent Sos Baynat s/n, 12071 Castellón, Spain; (M.M.); (R.P.); (V.M.-C.); (M.I.B.)
| | - Santiago V. Luis
- Department of Inorganic and Organic Chemistry, Jaume I University, Av. Vicent Sos Baynat s/n, 12071 Castellón, Spain; (M.M.); (R.P.); (V.M.-C.); (M.I.B.)
| |
Collapse
|
4
|
Chen W, Tan C, Wang H, Ye X. The Development of Organocatalytic Asymmetric Reduction of Carbonyls and Imines Using Silicon Hydrides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wenchao Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 P. R. China
| | - Choon‐Hong Tan
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 P. R. China
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 P. R. China
| |
Collapse
|
5
|
Recent advances in reactions promoted by amino acids and oligopeptides. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2018-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
During the last 20 years, Organocatalysis has become one of the major fields of Catalysis. Herein, we provide a recent overview on reactions where the use of amino acids and peptides as the organocatalysts was employed. All aspects regarding aldol reactions, Michael reactions, epoxidation, Henry reactions and many others that are crucial for the reaction conditions and reaction mechanisms are discussed.
Collapse
|
6
|
Boukachabia M, Aribi-Zouioueche L, Riant O. Synthesis and evaluation of hemisalen type ligands based on chiral diamine and their use with ruthenium (II) as water-soluble catalysts for the ATH of aromatic ketones. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
7
|
Wujkowska Z, Leśniak S, Kiełbasiński P, Rachwalski M. Highly enantioselective asymmetric reduction of aromatic ketimines promoted by chiral enantiomerically pure sulfoxides as organocatalysts. J Sulphur Chem 2018. [DOI: 10.1080/17415993.2018.1433178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zuzanna Wujkowska
- Department of Organic and Applied Chemistry, University of Łódź, Łódź, Poland
| | - Stanisław Leśniak
- Department of Organic and Applied Chemistry, University of Łódź, Łódź, Poland
| | - Piotr Kiełbasiński
- Department of Heteroorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Łódź, Poland
| | - Michał Rachwalski
- Department of Organic and Applied Chemistry, University of Łódź, Łódź, Poland
| |
Collapse
|
8
|
Organocatalytic Transfer Hydrogenation and Hydrosilylation Reactions. Top Curr Chem (Cham) 2016; 374:29. [DOI: 10.1007/s41061-016-0032-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/26/2016] [Indexed: 10/21/2022]
|
9
|
Ge X, Chen X, Qian C, Zhou S. Combined experimental/theoretical study of d-glucosamine promoted Ullmann-type C–N coupling catalyzed by copper(i): does amino really count? RSC Adv 2016. [DOI: 10.1039/c6ra03015g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ullmann type C–N coupling reaction catalyzed by copper(i) with d-glucosamine derivatives as promoters was studied by means of combined experimental/theoretical investigation.
Collapse
Affiliation(s)
- Xin Ge
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
- P. R. China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
| | - Xinzhi Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- P. R. China
| | - Chao Qian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- P. R. China
| | - Shaodong Zhou
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin
- Germany
| |
Collapse
|
10
|
Hajlaoui K, Guesmi A, Ben Hamadi N, Msaddek M. One-pot synthesis of new triazole-sucrose derivatives via click chemistry and evaluation of their antitubercular activity. HETEROCYCL COMMUN 2016. [DOI: 10.1515/hc-2016-0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AbstractReadily prepared copper nanoparticles are an effective catalyst for 1,3-dipolar cycloaddition of carbohydrate azide and a variety of alkynes that furnishes the corresponding 1,2,3-triazole-sucrose derivatives in excellent yields. Products were screened for their antimycobacterial activity against
Collapse
|
11
|
Ge X, Chen X, Qian C, Zhou S. Efficient Ullmann C–N coupling catalyzed by a recoverable oligose-supported copper complex. RSC Adv 2016. [DOI: 10.1039/c6ra13536f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The recoverable oligose-supported copper complex as catalyst for an Ullmann-type C–N coupling reaction of N-nucleophiles and aryl halides under mild conditions.
Collapse
Affiliation(s)
- Xin Ge
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
- P. R. China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
| | - Xinzhi Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- P. R. China
| | - Chao Qian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- P. R. China
| | - Shaodong Zhou
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin
- Germany
| |
Collapse
|
12
|
Ge X, Qian C, Ye X, Chen X. Asymmetric reduction of imines with trichlorosilane catalyzed by valine-derived formamide immobilized onto magnetic nano-Fe3O4. RSC Adv 2015. [DOI: 10.1039/c5ra08516k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Magnetic nano-Fe3O4-supported organocatalysts were synthesized by anchoring valine-derived formamide onto the surface of Fe3O4 magnetic nanoparticles, which were applied in the asymmetric reduction of imines with trichlorosilane.
Collapse
Affiliation(s)
- Xin Ge
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- P.R China
- School of Chemical and Material Engineering
| | - Chao Qian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- P.R China
| | - Xiaoming Ye
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- P.R China
| | - Xinzhi Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education
- College of Chemical and Biological Engineering
- Zhejiang University
- P.R China
| |
Collapse
|