1
|
Ryabukhin SV, Bondarenko DV, Trofymchuk SA, Lega DA, Volochnyuk DM. Aza-Heterocyclic Building Blocks with In-Ring CF 2 -Fragment. CHEM REC 2024; 24:e202300283. [PMID: 37873869 DOI: 10.1002/tcr.202300283] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/27/2023] [Indexed: 10/25/2023]
Abstract
Modern organic chemistry is a titan supporting and reinforcing pharmaceutical, agricultural, food and material science products. Over the past decades, the organic compounds market has been evolving to meet all the research demands. In this regard, medicinal chemistry is especially dependent on available chemical space as subtle tuning of the molecule structure is required to create a drug with relevant physicochemical properties and a remarkable activity profile. The recent rapid evolution of synthetic methodology to deploy fluorine has brought fluorinated compounds to the spotlight of MedChem community. And now unique properties of fluorine still keep fascinating more and more as its justified installation into a molecular framework has a beneficial impact on membrane permeability, lipophilicity, metabolic stability, pharmacokinetic properties, conformation, pKa , etc. The backward influence of medicinal chemistry on organic synthesis has also changed the landscape of the latter towards new fluorinated topologies as well. Such complex relationships create a flexible and ever-changing ecosystem. Given that MedChem investigations strongly lean on the ability to reach suitable building blocks and the existence of reliable synthetic methods in this review we collected advances in the chemistry of respectful, but still enigmatic gem-difluorinated aza-heterocyclic building blocks.
Collapse
Affiliation(s)
- S V Ryabukhin
- Enamine Ltd., 78 Winston Churchill str., 02094, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska str., 01033, Kyiv, Ukraine
- Institute of Organic Chemistry of the, National Academy of Sciences of Ukraine, 5 Akademik Kukhar str., 02094, Kyiv, Ukraine
| | - D V Bondarenko
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska str., 01033, Kyiv, Ukraine
| | - S A Trofymchuk
- Enamine Ltd., 78 Winston Churchill str., 02094, Kyiv, Ukraine
- Institute of Organic Chemistry of the, National Academy of Sciences of Ukraine, 5 Akademik Kukhar str., 02094, Kyiv, Ukraine
| | - D A Lega
- Enamine Ltd., 78 Winston Churchill str., 02094, Kyiv, Ukraine
- National University of Pharmacy of the Ministry of Health of Ukraine, 53 Pushkinska str., 61002, Kharkiv, Ukraine
| | - D M Volochnyuk
- Enamine Ltd., 78 Winston Churchill str., 02094, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska str., 01033, Kyiv, Ukraine
- Institute of Organic Chemistry of the, National Academy of Sciences of Ukraine, 5 Akademik Kukhar str., 02094, Kyiv, Ukraine
| |
Collapse
|
2
|
Mykhailiuk PK. Fluorine-Containing Prolines: Synthetic Strategies, Applications, and Opportunities. J Org Chem 2022; 87:6961-7005. [PMID: 35175772 DOI: 10.1021/acs.joc.1c02956] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluorinated prolines play an important role in peptide studies, protein engineering, medicinal chemistry, drug discovery, and agrochemistry. Since the first synthesis of 4-fluoroprolines by Gottlieb and Witkop in 1965, their popularity started to grow exponentially. For example, during the past two decades, all isomeric trifluoromethyl-substituted prolines have been synthesized. In this Perspective, chemical properties and applications of fluorinated prolines are discussed. Synthetic approaches to all known fluorine-containing prolines are also discussed and analyzed. This analysis unexpectedly revealed an unsolved problem: in strict contrast to fluoro- and trifluoromethyl-substituted prolines, the corresponding analogues with fluoromethyl and difluoromethyl groups are mostly unknown. At the end of the paper, structures of several interesting, yet unknown, fluorinated prolines are disclosed─a good opportunity for chemists to make them.
Collapse
|
3
|
Moschner J, Stulberg V, Fernandes R, Huhmann S, Leppkes J, Koksch B. Approaches to Obtaining Fluorinated α-Amino Acids. Chem Rev 2019; 119:10718-10801. [PMID: 31436087 DOI: 10.1021/acs.chemrev.9b00024] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Fluorine does not belong to the pool of chemical elements that nature uses to build organic matter. However, chemists have exploited the unique properties of fluorine and produced countless fluoro-organic compounds without which our everyday lives would be unimaginable. The incorporation of fluorine into amino acids established a completely new class of amino acids and their properties, and those of the biopolymers constructed from them are extremely interesting. Increasing interest in this class of amino acids caused the demand for robust and stereoselective synthetic protocols that enable straightforward access to these building blocks. Herein, we present a comprehensive account of the literature in this field going back to 1995. We place special emphasis on a particular fluorination strategy. The four main sections describe fluorinated versions of alkyl, cyclic, aromatic amino acids, and also nickel-complexes to access them. We progress by one carbon unit increments. Special cases of amino acids for which there is no natural counterpart are described at the end of each section. Synthetic access to each of the amino acids is summarized in form of a table at the end of this article with the aim to make the information easily accessible to the reader.
Collapse
Affiliation(s)
- Johann Moschner
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Valentina Stulberg
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Rita Fernandes
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Susanne Huhmann
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Jakob Leppkes
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Beate Koksch
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| |
Collapse
|
4
|
Remete AM, Nonn M, Fustero S, Fülöp F, Kiss L. Synthesis of fluorinated amino acid derivatives through late-stage deoxyfluorinations. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Tayyari SF, Gholamhoseinpour M, Emamian S, Sammelson RE. Conformational analysis, structure, and normal coordinate analysis of vibrational spectra of hexafluoroacetone. A density functional theory study. J Fluor Chem 2016. [DOI: 10.1016/j.jfluchem.2016.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Onomura O, N. Gichuhi P, Kuriyama M. Diastereoselective Synthesis of 3-Fluoro-2-substituted Piperidines and Pyrrolidines. HETEROCYCLES 2014. [DOI: 10.3987/com-13-s(s)27] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
|
8
|
Exploiting morph-DAST mediated ring-expansion of substituted cyclic β-amino alcohols for the preparation of cyclic fluorinated amino acids. Synthesis of 5-fluoromethylproline and 5-fluoropipecolic acid. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.02.082] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Yu W, Williams L, Camp VM, Olson JJ, Goodman MM. Synthesis and biological evaluation of anti-1-amino-2-[18F]fluoro-cyclobutyl-1-carboxylic acid (anti-2-[18F]FACBC) in rat 9L gliosarcoma. Bioorg Med Chem Lett 2010; 20:2140-3. [DOI: 10.1016/j.bmcl.2010.02.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 02/09/2010] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
|
10
|
Yu W, Williams L, Camp VM, Malveaux E, Olson JJ, Goodman MM. Stereoselective synthesis and biological evaluation of syn-1-amino-3-[18F]fluorocyclobutyl-1-carboxylic acid as a potential positron emission tomography brain tumor imaging agent. Bioorg Med Chem 2009; 17:1982-90. [PMID: 19216081 DOI: 10.1016/j.bmc.2009.01.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 01/14/2009] [Accepted: 01/15/2009] [Indexed: 10/21/2022]
Abstract
Amino acid syn-1-amino-3-fluoro-cyclobutyl-1-carboxylic acid (syn-FACBC) 12, the isomer of anti-FACBC, has been selectively synthesized and [(18)F] radiofluorinated in 52% decay-corrected yield using no-carrier-added [(18)F]fluoride. The key step in the synthesis of the desired isomer involved stereoselective reduction using lithium alkylborohydride/zinc chloride, which improved the ratio of anti-alcohol to syn-alcohol from 17:83 to 97:3. syn-FACBC 12 entered rat 9L gliosarcoma cells primarily via L-type amino acid transport in vitro with high uptake of 16% injected dose per 5 x 10(5) cells. Biodistribution studies in rats with 9L gliosarcoma brain tumors demonstrated high tumor to brain ratio of 12:1 at 30 min post injection. In this model, amino acid syn-[(18)F]FACBC 12 is a promising metabolically based radiotracer for positron emission tomography brain tumor imaging.
Collapse
Affiliation(s)
- Weiping Yu
- Department of Radiology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
11
|
Verniest G, Surmont R, Hende EV, Deweweire A, Deroose F, Thuring JW, De Kimpe N. New Entries toward 3,3-Difluoropiperidines. J Org Chem 2008; 73:5458-61. [DOI: 10.1021/jo800768q] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guido Verniest
- Department of Organic Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium, and Johnson & Johnson Pharmaceutical Research & Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Riccardo Surmont
- Department of Organic Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium, and Johnson & Johnson Pharmaceutical Research & Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Eva Van Hende
- Department of Organic Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium, and Johnson & Johnson Pharmaceutical Research & Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Arvid Deweweire
- Department of Organic Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium, and Johnson & Johnson Pharmaceutical Research & Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Frederik Deroose
- Department of Organic Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium, and Johnson & Johnson Pharmaceutical Research & Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Jan Willem Thuring
- Department of Organic Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium, and Johnson & Johnson Pharmaceutical Research & Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Norbert De Kimpe
- Department of Organic Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium, and Johnson & Johnson Pharmaceutical Research & Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| |
Collapse
|
12
|
Liu J, Kepe V, Zabjek A, Petric A, Padgett HC, Satyamurthy N, Barrio JR. High-yield, automated radiosynthesis of 2-(1-{6-[(2-[18F]fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)malononitrile ([18F]FDDNP) ready for animal or human administration. Mol Imaging Biol 2007; 9:6-16. [PMID: 17051324 DOI: 10.1007/s11307-006-0061-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biomarker 2-(1-{6-[(2-[(18)F]fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)malononitrile ([(18)F]FDDNP) is used as a positron emission tomography (PET) imaging probe for Alzheimer's disease and other neurodegenerative diseases. A high-yield and fully automated synthesis of [(18)F]FDDNP--along with the synthesis and characterization of non-radioactive FDDNP, a fluorescent probe derived from 2-(1,1-dicyanopropenyl-2)-6-dimethylaminonaphthalene (DDNP)--are reported. Radiofluorination of the tosyloxy precursor 2-{[6-(2,2-dicyano-1-methylvinyl)-2-naphthyl](methyl)amino}ethyl-4-methylbenzenesulfonate (DDNPTs) with K(18)F/Kryptofix 2.2.2. yielded chemically (>99%) and radiochemically (>99%) pure [(18)F]FDDNP in high radiochemical yields (40-60%; n> 120), with specific activities ranging from 4 to 8 Ci/mumol at the end of synthesis (90 minutes). Both remote, semiautomated and automated synthesis procedures are described. Either approach provides a reliable method for production of large quantities (110-170 mCi from 500 mCi of [(18)F]fluoride) of [(18)F]FDDNP allowing for multiple PET experiments in the same day or for distribution of the tracer from a single cyclotron facility to PET imaging centers at various geographical distances.
Collapse
Affiliation(s)
- Jie Liu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California-Los Angeles, 10833 Le Conte Avenue CHS B2-086, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Spengler J, Böttcher C, Albericio F, Burger K. Hexafluoroacetone as Protecting and Activating Reagent: New Routes to Amino, Hydroxy, and Mercapto Acids and Their Application for Peptide and Glyco- and Depsipeptide Modification. Chem Rev 2006; 106:4728-46. [PMID: 17091933 DOI: 10.1021/cr0509962] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jan Spengler
- Institute for Research in Biomedicine, Barcelona Science Park, Josep Samitier 1-5, E-08028 Barcelona, Spain.
| | | | | | | |
Collapse
|