1
|
Front S, Almeida S, Zoete V, Charollais-Thoenig J, Gallienne E, Marmy C, Pilloud V, Marti R, Wood T, Martin OR, Demotz S. 4-epi-Isofagomine derivatives as pharmacological chaperones for the treatment of lysosomal diseases linked to β-galactosidase mutations: Improved synthesis and biological investigations. Bioorg Med Chem 2018; 26:5462-5469. [PMID: 30270003 DOI: 10.1016/j.bmc.2018.09.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
(5aR)-5a-C-pentyl-4-epi-isofagomine 1 is a powerful inhibitor of lysosomal β-galactosidase and a remarkable chaperone for mutations associated with GM1-gangliosidosis and Morquio disease type B. We report herein an improved synthesis of this compound and analogs (5a-C-methyl, pentyl, nonyl and phenylethyl derivatives), and a crystal structure of a synthetic intermediate that confirms its configuration resulting from the addition of a Grignard reagent. These compounds were evaluated as glycosidase inhibitors and their potential as chaperones for mutant lysosomal galactosidases determined. Based on these results and on docking studies, the 5-C-pentyl derivative 1 was selected as the optimal structure for further investigations: this compound induces the maturation of mutated β-galactosidase in fibroblasts of a GM1-gangliosidosis patient and promote the decrease of keratan sulfate and oligosaccharide load in patient cells. Compound 1 is clearly capable of restoring β-galactosidase activity and of promoting maturation of the protein, which should result in significant clinical benefit. These properties strongly support the development of compound 1 for the treatment of GM1-gangliosidosis and Morquio disease type B patients harboring β-galactosidase mutations sensitive to pharmacological chaperoning.
Collapse
Affiliation(s)
- Sophie Front
- Université d'Orléans & CNRS, Institut de Chimie Organique et Analytique (ICOA), UMR 7311, Rue de Chartres, 45067 Orléans, France
| | - Sofia Almeida
- Haute Ecole d'Ingénierie et d'Architecture Fribourg, Bd de Pérolles 80, 1705 Fribourg, Switzerland
| | - Vincent Zoete
- SIB (Swiss Institute of Bioinformatics), Quartier Sorge, 1015 Lausanne, Switzerland
| | | | - Estelle Gallienne
- Université d'Orléans & CNRS, Institut de Chimie Organique et Analytique (ICOA), UMR 7311, Rue de Chartres, 45067 Orléans, France
| | - Céline Marmy
- Haute Ecole d'Ingénierie et d'Architecture Fribourg, Bd de Pérolles 80, 1705 Fribourg, Switzerland
| | - Vincent Pilloud
- Haute Ecole d'Ingénierie et d'Architecture Fribourg, Bd de Pérolles 80, 1705 Fribourg, Switzerland
| | - Roger Marti
- Haute Ecole d'Ingénierie et d'Architecture Fribourg, Bd de Pérolles 80, 1705 Fribourg, Switzerland
| | - Tim Wood
- Greenwood Genetic Center, 106 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Olivier R Martin
- Université d'Orléans & CNRS, Institut de Chimie Organique et Analytique (ICOA), UMR 7311, Rue de Chartres, 45067 Orléans, France.
| | | |
Collapse
|
2
|
Stauffert F, Serra-Vinardell J, Gómez-Grau M, Michelakakis H, Mavridou I, Grinberg D, Vilageliu L, Casas J, Bodlenner A, Delgado A, Compain P. Stereodivergent synthesis of right- and left-handed iminoxylitol heterodimers and monomers. Study of their impact on β-glucocerebrosidase activity. Org Biomol Chem 2018; 15:3681-3705. [PMID: 28401966 DOI: 10.1039/c7ob00443e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A library of dimers and heterodimers of both enantiomers of 2-O-alkylated iminoxylitol derivatives has been synthesised and evaluated on β-glucocerebrosidase (GCase), the enzyme responsible for Gaucher disease (GD). Although the objective was to target simultaneously the active site and a secondary binding site of the glucosidase, the (-)-2-iminoxylitol moiety seemed detrimental for imiglucerase inhibition and no significant enhancement was obtained in G202R, N370S and L444P fibroblasts. However, all compounds having at least one (+)-2-O-alkyl iminoxylitol are GCase inhibitors in the nano molar range and are significant GCase activity enhancers in G202R fibroblats, as confirmed by a decrease of glucosylceramide levels and by co-localization studies.
Collapse
Affiliation(s)
- Fabien Stauffert
- Laboratoire de Synthèse Organique et Molécules Bioactives (SYBIO), Université de Strasbourg/CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Lebl R, Thonhofer M, Tysoe C, Pabst BM, Schalli M, Weber P, Paschke E, Stütz AE, Tschernutter M, Windischhofer W, Withers SG. A Morita-Baylis-Hillman based route to C -5a-chain-extended 4- epi -isofagomine type glycosidase inhibitors. Carbohydr Res 2017; 442:31-40. [DOI: 10.1016/j.carres.2017.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 01/21/2023]
|
4
|
Front S, Biela-Banaś A, Burda P, Ballhausen D, Higaki K, Caciotti A, Morrone A, Charollais-Thoenig J, Gallienne E, Demotz S, Martin OR. (5aR)-5a-C-Pentyl-4-epi-isofagomine: A powerful inhibitor of lysosomal β-galactosidase and a remarkable chaperone for mutations associated with GM1-gangliosidosis and Morquio disease type B. Eur J Med Chem 2016; 126:160-170. [PMID: 27750150 DOI: 10.1016/j.ejmech.2016.09.095] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/26/2016] [Accepted: 09/29/2016] [Indexed: 12/14/2022]
Abstract
This report is about the identification, synthesis and initial biological characterization of derivatives of 4-epi-isofagomine as pharmacological chaperones (PC) for human lysosomal β-galactosidase. The two epimers of 4-epi-isofagomine carrying a pentyl group at C-5a, namely (5aR)- and (5aS)-5a-C-pentyl-4-epi-isofagomine, were prepared by an innovative procedure involving in the key step the addition of nitrohexane to a keto-pentopyranoside. Both epimers were evaluated as inhibitors of the human β-galactosidase: the (5aR)-stereoisomer (compound 1) was found to be a very potent inhibitor of the enzyme (IC50 = 8 nM, 30× more potent than 4-epi-isofagomine at pH 7.3) with a high selectivity for this glycosidase whereas the (5aS) epimer was a much weaker inhibitor. In addition, compound 1 showed a remarkable activity as a PC. It significantly enhanced the residual activity of mutant β-galactosidase in 15 patient cell lines out of 23, with enhancement factors greater than 3.5 in 10 cell lines and activity restoration up to 91% of normal. Altogether, these results indicated that (5aR)-5a-C-pentyl-4-epi-isofagomine constitutes a promising PC-based drug candidate for the treatment of GM1-gangliosidosis and Morquio disease type B.
Collapse
Affiliation(s)
- Sophie Front
- Université d'Orléans & CNRS, Institut de Chimie Organique et Analytique (ICOA), UMR 7311, Rue de Chartres, 45067 Orléans, France
| | - Anna Biela-Banaś
- Université d'Orléans & CNRS, Institut de Chimie Organique et Analytique (ICOA), UMR 7311, Rue de Chartres, 45067 Orléans, France
| | - Patricie Burda
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Diana Ballhausen
- Center for Molecular Diseases, Lausanne University Hospital, 1005 Lausanne, Switzerland
| | - Katsumi Higaki
- Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, Yonago, Japan
| | - Anna Caciotti
- Neuroscience, Psychology, Pharmacology and Child Health Department, University of Florence, 50139 Florence, Italy
| | - Amelia Morrone
- Neuroscience, Psychology, Pharmacology and Child Health Department, University of Florence, 50139 Florence, Italy; Molecular and Cell Biology Laboratory, Paediatric Neurology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital, 50139 Florence, Italy
| | | | - Estelle Gallienne
- Université d'Orléans & CNRS, Institut de Chimie Organique et Analytique (ICOA), UMR 7311, Rue de Chartres, 45067 Orléans, France
| | | | - Olivier R Martin
- Université d'Orléans & CNRS, Institut de Chimie Organique et Analytique (ICOA), UMR 7311, Rue de Chartres, 45067 Orléans, France.
| |
Collapse
|
5
|
Thonhofer M, Weber P, Gonzalez Santana A, Tysoe C, Fischer R, Pabst BM, Paschke E, Schalli M, Stütz AE, Tschernutter M, Windischhofer W, Withers SG. Synthesis of C-5a-substituted derivatives of 4-epi-isofagomine: notable β-galactosidase inhibitors and activity promotors of GM1-gangliosidosis related human lysosomal β-galactosidase mutant R201C. Carbohydr Res 2016; 429:71-80. [DOI: 10.1016/j.carres.2016.03.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/27/2022]
|
6
|
Synthesis of C-5a-chain extended derivatives of 4-epi-isofagomine: Powerful β-galactosidase inhibitors and low concentration activators of GM1-gangliosidosis-related human lysosomal β-galactosidase. Bioorg Med Chem Lett 2016; 26:1438-42. [PMID: 26838810 DOI: 10.1016/j.bmcl.2016.01.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 10/22/2022]
Abstract
From an easily available partially protected formal derivative of 1-deoxymannojirimycin, by hydroxymethyl chain-branching and further elaboration, lipophilic analogs of the powerful β-d-galactosidase inhibitor 4-epi-isofagomine have become available. New compounds exhibit improved inhibitory activities comparable to benchmark compound NOEV (N-octyl-epi-valienamine) and may serve as leads towards improved and more selective pharmacological chaperones for GM1-gangliosidosis.
Collapse
|
7
|
da Cruz FP, Horne G, Fleet GW. Hydroxylated C-branched pyrrolidines, C-branched prolines and C-branched piperidines from a 2-C-methyl sugar lactone; efficient azide displacement of a tertiary triflate with inversion of configuration. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2008.09.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
A proline-catalyzed aldol approach to the synthesis of 1-N-iminosugars of the d-glucuronic acid type. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2007.11.153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Takahata H, Mihara Y, Ojima H, Imahori T, Yoshimura Y, Ouchi H. Asymmetric Synthesis of All Stereoisomers of Isofagomine Using [2,3]-Wittig Rearrangement. HETEROCYCLES 2007. [DOI: 10.3987/com-07-s(k)58] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Six-membered ring systems: pyridines and benzo derivatives. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0959-6380(05)80334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|