1
|
Kuramochi M, Nakamura M, Takahashi H, Komoriya T, Takita T, Pham NTK, Yasukawa K, Yoshimune K. Adenosine triphosphate induces amorphous aggregation of amyloid β by increasing Aβ dynamics. Sci Rep 2024; 14:8134. [PMID: 38584155 PMCID: PMC10999452 DOI: 10.1038/s41598-024-58773-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/03/2024] [Indexed: 04/09/2024] Open
Abstract
Amyloid β (Aβ) aggregates into two distinct fibril and amorphous forms in the brains of patients with Alzheimer's disease. Adenosine triphosphate (ATP) is a biological hydrotrope that causes Aβ to form amorphous aggregates and inhibit fibril formation at physiological concentrations. Based on diffracted X-ray blinking (DXB) analysis, the dynamics of Aβ significantly increased immediately after ATP was added compared to those in the absence and presence of ADP and AMP, and the effect diminished after 30 min as the aggregates formed. In the presence of ATP, the β-sheet content of Aβ gradually increased from the beginning, and in the absence of ATP, the content increased rapidly after 180 min incubation, as revealed by a time-dependent thioflavin T fluorescence assay. Images of an atomic force microscope revealed that ATP induces the formation of amorphous aggregates with an average diameter of less than 100 nm, preventing fibrillar formation during 4 days of incubation at 37 °C. ATP may induce amorphous aggregation by increasing the dynamics of Aβ, and as a result, the other aggregation pathway is omitted. Our results also suggest that DXB analysis is a useful method to evaluate the inhibitory effect of fibrillar formation.
Collapse
Affiliation(s)
- Masahiro Kuramochi
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, 316-8511, Japan
| | - Momoka Nakamura
- Department of Applied Molecular Chemistry, Graduate School of Industrial Technology, Nihon University, 1-2-1, Izumichou, Narashino, Chiba, 275-8575, Japan
| | - Hiroto Takahashi
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, 316-8511, Japan
| | - Tomoe Komoriya
- Department of Sustainable Engineering, College of Industrial Technology, Nihon University, 1-2-1, Izumichou, Narashino, Chiba, 275-8575, Japan
| | - Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Ngan Thi Kim Pham
- Department of Applied Molecular Chemistry, Graduate School of Industrial Technology, Nihon University, 1-2-1, Izumichou, Narashino, Chiba, 275-8575, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kazuaki Yoshimune
- Department of Applied Molecular Chemistry, Graduate School of Industrial Technology, Nihon University, 1-2-1, Izumichou, Narashino, Chiba, 275-8575, Japan.
| |
Collapse
|
2
|
Pittman JM, Srivastava AK, Boughter CT, Venkata BS, Zerweck J, Moore PC, Smok I, Tonelli M, Sachleben JR, Meredith SC. Nanodroplet Oligomers (NanDOs) of Aβ40. Biochemistry 2021; 60:2691-2703. [PMID: 34029056 DOI: 10.1021/acs.biochem.1c00147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Using atomic force microscopy (AFM) and nuclear magnetic resonance (NMR), we describe small Aβ40 oligomers, termed nanodroplet oligomers (NanDOs), which form rapidly and at Aβ40 concentrations too low for fibril formation. NanDOs were observed in putatively monomeric solutions of Aβ40 (e.g., by size exclusion chromatography). Video-rate scanning AFM shows rapid fusion and dissolution of small oligomer-sized particles, of which the median size increases with peptide concentration. In NMR (13C HSQC), a small number of chemical shifts changed with a change in peptide concentration. Paramagnetic relaxation enhancement NMR experiments also support the formation of NanDOs and suggest prominent interactions in hydrophobic domains of Aβ40. Addition of Zn2+ to Aβ40 solutions caused flocculation of NanDO-containing solutions, and selective loss of signal intensity in NMR spectra from residues in the N-terminal domain of Aβ40. NanDOs may represent the earliest aggregated form of Aβ40 in the aggregation pathway and are akin to premicelles in solutions of amphiphilies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Marco Tonelli
- NMR-FAM, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joseph R Sachleben
- NMR Core Facility, The University of Chicago, Chicago, Illinois 60637, United States
| | | |
Collapse
|
3
|
Kobayakawa T, Azuma C, Watanabe Y, Sawamura S, Taniguchi A, Hayashi Y, Tsuji K, Tamamura H. Development of Methods for Convergent Synthesis of Chloroalkene Dipeptide Isosteres and Its Application. J Org Chem 2021; 86:5091-5101. [DOI: 10.1021/acs.joc.0c03019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Chika Azuma
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yuki Watanabe
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Shunsuke Sawamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Atsuhiko Taniguchi
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yoshio Hayashi
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kohei Tsuji
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
4
|
Apostolopoulos V, Bojarska J, Chai TT, Elnagdy S, Kaczmarek K, Matsoukas J, New R, Parang K, Lopez OP, Parhiz H, Perera CO, Pickholz M, Remko M, Saviano M, Skwarczynski M, Tang Y, Wolf WM, Yoshiya T, Zabrocki J, Zielenkiewicz P, AlKhazindar M, Barriga V, Kelaidonis K, Sarasia EM, Toth I. A Global Review on Short Peptides: Frontiers and Perspectives. Molecules 2021; 26:430. [PMID: 33467522 PMCID: PMC7830668 DOI: 10.3390/molecules26020430] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/23/2020] [Accepted: 01/09/2021] [Indexed: 12/13/2022] Open
Abstract
Peptides are fragments of proteins that carry out biological functions. They act as signaling entities via all domains of life and interfere with protein-protein interactions, which are indispensable in bio-processes. Short peptides include fundamental molecular information for a prelude to the symphony of life. They have aroused considerable interest due to their unique features and great promise in innovative bio-therapies. This work focusing on the current state-of-the-art short peptide-based therapeutical developments is the first global review written by researchers from all continents, as a celebration of 100 years of peptide therapeutics since the commencement of insulin therapy in the 1920s. Peptide "drugs" initially played only the role of hormone analogs to balance disorders. Nowadays, they achieve numerous biomedical tasks, can cross membranes, or reach intracellular targets. The role of peptides in bio-processes can hardly be mimicked by other chemical substances. The article is divided into independent sections, which are related to either the progress in short peptide-based theranostics or the problems posing challenge to bio-medicine. In particular, the SWOT analysis of short peptides, their relevance in therapies of diverse diseases, improvements in (bio)synthesis platforms, advanced nano-supramolecular technologies, aptamers, altered peptide ligands and in silico methodologies to overcome peptide limitations, modern smart bio-functional materials, vaccines, and drug/gene-targeted delivery systems are discussed.
Collapse
Affiliation(s)
- Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (J.M.); (V.B.)
| | - Joanna Bojarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Tsun-Thai Chai
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia;
| | - Sherif Elnagdy
- Botany and Microbiology Department, Faculty of Science, Cairo University, Gamaa St., Giza 12613, Egypt; (S.E.); (M.A.)
| | - Krzysztof Kaczmarek
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland; (K.K.); (J.Z.)
| | - John Matsoukas
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (J.M.); (V.B.)
- NewDrug, Patras Science Park, 26500 Patras, Greece;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Roger New
- Vaxcine (UK) Ltd., c/o London Bioscience Innovation Centre, London NW1 0NH, UK;
- Faculty of Science & Technology, Middlesex University, The Burroughs, London NW4 4BT, UK;
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA;
| | - Octavio Paredes Lopez
- Centro de Investigación y de Estudios Avanzados del IPN, Departamento de Biotecnología y Bioquímica, Irapuato 36824, Guanajuato, Mexico;
| | - Hamideh Parhiz
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA;
| | - Conrad O. Perera
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - Monica Pickholz
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina;
- Instituto de Física de Buenos Aires (IFIBA, UBA-CONICET), Argentina, Buenos Aires 1428, Argentina
| | - Milan Remko
- Remedika, Luzna 9, 85104 Bratislava, Slovakia;
| | - Michele Saviano
- Institute of Crystallography (CNR), Via Amendola 122/o, 70126 Bari, Italy;
| | - Mariusz Skwarczynski
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (M.S.); (I.T.)
| | - Yefeng Tang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (MOE), School of Pharma Ceutical Sciences, Tsinghua University, Beijing 100084, China;
| | - Wojciech M. Wolf
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | | | - Janusz Zabrocki
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland; (K.K.); (J.Z.)
| | - Piotr Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland;
- Department of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Maha AlKhazindar
- Botany and Microbiology Department, Faculty of Science, Cairo University, Gamaa St., Giza 12613, Egypt; (S.E.); (M.A.)
| | - Vanessa Barriga
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (J.M.); (V.B.)
| | | | | | - Istvan Toth
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (M.S.); (I.T.)
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
5
|
Scherpelz KP, Wang S, Pytel P, Madhurapantula RS, Srivastava AK, Sachleben JR, Orgel J, Ishii Y, Meredith SC. Atomic-level differences between brain parenchymal- and cerebrovascular-seeded Aβ fibrils. Sci Rep 2021; 11:247. [PMID: 33420184 PMCID: PMC7794565 DOI: 10.1038/s41598-020-80042-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 12/02/2020] [Indexed: 11/24/2022] Open
Abstract
Alzheimer's disease is characterized by neuritic plaques, the main protein components of which are β-amyloid (Aβ) peptides deposited as β-sheet-rich amyloid fibrils. Cerebral Amyloid Angiopathy (CAA) consists of cerebrovascular deposits of Aβ peptides; it usually accompanies Alzheimer's disease, though it sometimes occurs in the absence of neuritic plaques, as AD also occurs without accompanying CAA. Although neuritic plaques and vascular deposits have similar protein compositions, one of the characteristic features of amyloids is polymorphism, i.e., the ability of a single pure peptide to adopt multiple conformations in fibrils, depending on fibrillization conditions. For this reason, we asked whether the Aβ fibrils in neuritic plaques differed structurally from those in cerebral blood vessels. To address this question, we used seeding techniques, starting with amyloid-enriched material from either brain parenchyma or cerebral blood vessels (using meninges as the source). These amyloid-enriched preparations were then added to fresh, disaggregated solutions of Aβ to make replicate fibrils, as described elsewhere. Such fibrils were then studied by solid-state NMR, fiber X-ray diffraction, and other biophysical techniques. We observed chemical shift differences between parenchymal vs. vascular-seeded replicate fibrils in select sites (in particular, Ala2, Phe4, Val12, and Gln15 side chains) in two-dimensional 13C-13C correlation solid-state NMR spectra, strongly indicating structural differences at these sites. X-ray diffraction studies also indicated that vascular-seeded fibrils displayed greater order than parenchyma-seeded fibrils in the "side-chain dimension" (~ 10 Å reflection), though the "hydrogen-bond dimensions" (~ 5 Å reflection) were alike. These results indicate that the different nucleation conditions at two sites in the brain, parenchyma and blood vessels, affect the fibril products that get formed at each site, possibly leading to distinct pathophysiological outcomes.
Collapse
Affiliation(s)
| | - Songlin Wang
- Department of Chemistry, University of Illinois At Chicago, Chicago, IL, 60607, USA
| | - Peter Pytel
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA
| | - Rama S Madhurapantula
- Department of Biology and Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Atul K Srivastava
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA
| | - Joseph R Sachleben
- Biomolecular NMR Facility, The University of Chicago, Chicago, IL, 60637, USA
| | - Joseph Orgel
- Department of Biology and Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Yoshitaka Ishii
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Stephen C Meredith
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
6
|
Abstract
Amyloid beta peptide (Aβ)-related studies require an adequate supply of purified Aβ peptide. However, Aβ peptides are “difficult sequences” to synthesize chemically, and low yields are common due to aggregation during purification. Here, we demonstrate an easier synthesis, deprotection, reduction, cleavage, and purification process for Aβ(1-40) using standard 9-fluorenylmethyloxycarbonyl (Fmoc)-protected amino acids and solid-phase peptide synthesis (SPPS) resin [HMBA (4-hydroxymethyl benzamide) resin] that provides higher yields of Aβ(1-40) than previous standard protocols. Furthermore, purification requires a similar amount of time as conventional purification processes, although the peptide must be cleaved from the resin immediately prior to purification. The method described herein is not limited to the production of Aβ(1-40), and can be used to synthesize other easily-oxidized and aggregating sequences. Our proposed methodology will contribute to various fields using “difficult sequence” peptides, such as pharmaceutical and materials science, as well as research for the diagnosis and treatment of protein/peptide misfolding diseases.
Collapse
|
7
|
Cotrina EY, Gimeno A, Llop J, Jiménez-Barbero J, Quintana J, Valencia G, Cardoso I, Prohens R, Arsequell G. Calorimetric Studies of Binary and Ternary Molecular Interactions between Transthyretin, Aβ Peptides, and Small-Molecule Chaperones toward an Alternative Strategy for Alzheimer's Disease Drug Discovery. J Med Chem 2020; 63:3205-3214. [PMID: 32124607 PMCID: PMC7115756 DOI: 10.1021/acs.jmedchem.9b01970] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
Transthyretin
(TTR) modulates the deposition, processing, and toxicity
of Abeta (Aβ) peptides. We have shown that this effect is enhanced
in mice by treatment with small molecules such as iododiflunisal (IDIF, 4), a good TTR stabilizer. Here, we describe the thermodynamics
of the formation of binary and ternary complexes among TTR, Aβ(1–42)
peptide, and TTR stabilizers using isothermal titration calorimetry
(ITC). A TTR/Aβ(1–42) (1:1)
complex with a dissociation constant of Kd = 0.94 μM is formed; with IDIF
(4), this constant improves up to Kd = 0.32 μM, indicating
the presence of a ternary complex TTR/IDIF/Aβ(1–42).
However, with the drugs diflunisal (1) or Tafamidis (2), an analogous chaperoning effect could not be observed.
Similar phenomena could be recorded with the shorter peptide Aβ(12–28)
(7). We propose the design of a simple assay system for
the search of other chaperones that behave like IDIF and may become
potential candidate drugs for Alzheimer’s disease (AD).
Collapse
Affiliation(s)
- Ellen Y Cotrina
- Institut de Quı́mica Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), 08034 Barcelona, Spain
| | - Ana Gimeno
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 San Sebastian, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain.,Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 13, 48009 Bilbao, Spain.,Department of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, 48940 Leioa, Bizkaia, Spain
| | - Jordi Quintana
- Research Programme on Biomedical Informatics, Universitat Pompeu Fabra (UPF-IMIM), 08003 Barcelona, Spain
| | - Gregorio Valencia
- Institut de Quı́mica Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), 08034 Barcelona, Spain
| | - Isabel Cardoso
- IBMC-Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Rafel Prohens
- Unitat de Polimorfisme i Calorimetria, Centres Cientı́fics i Tecnològics, Universitat de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Gemma Arsequell
- Institut de Quı́mica Avançada de Catalunya (I.Q.A.C.-C.S.I.C.), 08034 Barcelona, Spain
| |
Collapse
|
8
|
Hussein WM, Skwarczynski M, Toth I. An Isodipeptide Building Block for Microwave-Assisted Solid-Phase Synthesis of Difficult Sequence-Containing Peptides. Methods Mol Biol 2020; 2103:139-150. [PMID: 31879923 DOI: 10.1007/978-1-0716-0227-0_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microwave technology, in conjunction with the isopeptide strategy including Fmoc-based solid-phase peptide synthesis (SPPS), was used to establish a methodology for time-efficient synthesis of peptides containing difficult sequences. A model difficult sequence-containing peptide (8QSer) was synthesized through this method in 1 day, representing a tenfold reduction in synthesis time compared to the isopeptide method combined with classical SPPS.
Collapse
Affiliation(s)
- Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia.
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
9
|
Mailig M, Liu F. The Application of Isoacyl Structural Motifs in Prodrug Design and Peptide Chemistry. Chembiochem 2019; 20:2017-2031. [DOI: 10.1002/cbic.201900260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Melrose Mailig
- Discovery ChemistryNovo Nordisk Research Center Seattle 530 Fairview Ave N Seattle WA 98109 USA
| | - Fa Liu
- Discovery ChemistryNovo Nordisk Research Center Seattle 530 Fairview Ave N Seattle WA 98109 USA
| |
Collapse
|
10
|
Zhang Z, Liang WG, Bailey LJ, Tan YZ, Wei H, Wang A, Farcasanu M, Woods VA, McCord LA, Lee D, Shang W, Deprez-Poulain R, Deprez B, Liu DR, Koide A, Koide S, Kossiakoff AA, Li S, Carragher B, Potter CS, Tang WJ. Ensemble cryoEM elucidates the mechanism of insulin capture and degradation by human insulin degrading enzyme. eLife 2018; 7:33572. [PMID: 29596046 PMCID: PMC5910022 DOI: 10.7554/elife.33572] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/28/2018] [Indexed: 11/29/2022] Open
Abstract
Insulin degrading enzyme (IDE) plays key roles in degrading peptides vital in type two diabetes, Alzheimer's, inflammation, and other human diseases. However, the process through which IDE recognizes peptides that tend to form amyloid fibrils remained unsolved. We used cryoEM to understand both the apo- and insulin-bound dimeric IDE states, revealing that IDE displays a large opening between the homologous ~55 kDa N- and C-terminal halves to allow selective substrate capture based on size and charge complementarity. We also used cryoEM, X-ray crystallography, SAXS, and HDX-MS to elucidate the molecular basis of how amyloidogenic peptides stabilize the disordered IDE catalytic cleft, thereby inducing selective degradation by substrate-assisted catalysis. Furthermore, our insulin-bound IDE structures explain how IDE processively degrades insulin by stochastically cutting either chain without breaking disulfide bonds. Together, our studies provide a mechanism for how IDE selectively degrades amyloidogenic peptides and offers structural insights for developing IDE-based therapies.
Collapse
Affiliation(s)
- Zhening Zhang
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, United States
| | - Wenguang G Liang
- Ben-May Institute for Cancer Research, The University of Chicago, Chicago, United States
| | - Lucas J Bailey
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - Yong Zi Tan
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Hui Wei
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, United States
| | - Andrew Wang
- Ben-May Institute for Cancer Research, The University of Chicago, Chicago, United States
| | - Mara Farcasanu
- Ben-May Institute for Cancer Research, The University of Chicago, Chicago, United States
| | - Virgil A Woods
- Department of Medicine, University of California, San Diego, La Jolla, United States
| | - Lauren A McCord
- Ben-May Institute for Cancer Research, The University of Chicago, Chicago, United States
| | - David Lee
- Department of Medicine, University of California, San Diego, La Jolla, United States
| | - Weifeng Shang
- BioCAT, Argonne National Laboratory, Illinois, United States
| | | | - Benoit Deprez
- Univ. Lille, INSERM, Institut Pasteur de Lille, Lille, France
| | - David R Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Akiko Koide
- Perlmutter Cancer Center, New York University School of Medicine, New York, United States.,New York University Langone Medical Center, New York University School of Medicine, New York, United States.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
| | - Shohei Koide
- Perlmutter Cancer Center, New York University School of Medicine, New York, United States.,New York University Langone Medical Center, New York University School of Medicine, New York, United States.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - Sheng Li
- Department of Medicine, University of California, San Diego, La Jolla, United States
| | - Bridget Carragher
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Clinton S Potter
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Wei-Jen Tang
- Ben-May Institute for Cancer Research, The University of Chicago, Chicago, United States
| |
Collapse
|
11
|
Romeo M, Stravalaci M, Beeg M, Rossi A, Fiordaliso F, Corbelli A, Salmona M, Gobbi M, Cagnotto A, Diomede L. Humanin Specifically Interacts with Amyloid-β Oligomers and Counteracts Their in vivo Toxicity. J Alzheimers Dis 2017; 57:857-871. [PMID: 28282805 DOI: 10.3233/jad-160951] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The 24-residue peptide humanin (HN) has been proposed as a peptide-based inhibitor able to interact directly with amyloid-β (Aβ) oligomers and interfere with the formation and/or biological properties of toxic Aβ species. When administered exogenously, HN, or its synthetic S14G-derivative (HNG), exerted multiple cytoprotective effects, counteracting the Aβ-induced toxicity. Whether these peptides interact directly with Aβ, particularly with the soluble oligomeric assemblies, remains largely unknown. We here investigated the ability of HN and HNG to interact directly with highly aggregating Aβ42, and interfere with the formation and toxicity of its oligomers. Experiments were run in cell-free conditions and in vivo in a transgenic C. elegans strain in which the Aβ toxicity was specifically due to oligomeric species. Thioflavin-T assay indicated that both HN and HNG delay the formation and reduce the final amount of Aβ42 fibrils. In vitro surface plasmon resonance studies indicated that they interact with Aβ42 oligomers favoring the formation of amorphous larger assemblies, observed with turbidity and electron microscopy. In vivo studies indicated that both HN and HNG decrease the relative abundance of A11-positive prefibrillar oligomers as well as OC-positive fibrillar oligomers and had similar protective effects. However, while HN possibly decreased the oligomers by promoting their assembly into larger aggregates, the reduction of oligomers caused by HNG can be ascribed to a marked decrease of the total Aβ levels, likely the consequence of the HNG-induced overexpression of the Aβ-degrading enzyme neprilysin. These findings provide information on the mechanisms underlying the anti-oligomeric effects of HN and HNG and illustrate the role of S14G substitution in regulating the in vivo mechanism of action.
Collapse
Affiliation(s)
- Margherita Romeo
- Department of Molecular Biochemistry and Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Matteo Stravalaci
- Department of Molecular Biochemistry and Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Marten Beeg
- Department of Molecular Biochemistry and Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Alessandro Rossi
- Department of Molecular Biochemistry and Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Fabio Fiordaliso
- Department of Cardiovascular Research, Unit of Bio-imaging, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Alessandro Corbelli
- Department of Cardiovascular Research, Unit of Bio-imaging, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Marco Gobbi
- Department of Molecular Biochemistry and Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Alfredo Cagnotto
- Department of Molecular Biochemistry and Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| |
Collapse
|
12
|
Koga T, Aso E, Higashi N. Novel Self-Assembling Amino Acid-Derived Block Copolymer with Changeable Polymer Backbone Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12378-12386. [PMID: 27340892 DOI: 10.1021/acs.langmuir.6b01617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Block copolymers have attracted much attention as potentially interesting building blocks for the development of novel nanostructured materials in recent years. Herein, we report a new type of self-assembling block copolymer with changeable polymer backbone structure, poly(Fmoc-Ser)ester-b-PSt, which was synthesized by combining the polycondensation of 9-fluorenylmethoxycarbonyl-serine (Fmoc-Ser) with the reversible addition-fragmentation chain transfer (RAFT) polymerization of styrene (St). This block copolymer showed the direct conversion of the backbone structure from polyester to polypeptide through a multi O,N-acyl migration triggered by base-induced deprotection of Fmoc groups in organic solvent. Such polymer-to-polymer conversion was found to occur quantitatively without decrease in degree of polymerization and to cause a drastic change in self-assembling property of the block copolymer. On the basis of several morphological analyses using FTIR spectroscopy, atomic force, and transmission and scanning electron microscopies, the resulting peptide block copolymer was found to self-assemble into a vesicle-like hollow nanosphere with relatively uniform diameter of ca. 300 nm in toluene. In this case, the peptide block generated from polyester formed β-sheet structure, indicating the self-assembly via peptide-guided route. We believe the findings presented in this study offer a new concept for the development of self-assembling block copolymer system.
Collapse
Affiliation(s)
- Tomoyuki Koga
- Department of Molecular Chemistry and Biochemistry, Faculty of Science & Engineering, Doshisha University , Kyotanabe, Kyoto 610-0321, Japan
| | - Eri Aso
- Department of Molecular Chemistry and Biochemistry, Faculty of Science & Engineering, Doshisha University , Kyotanabe, Kyoto 610-0321, Japan
| | - Nobuyuki Higashi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science & Engineering, Doshisha University , Kyotanabe, Kyoto 610-0321, Japan
| |
Collapse
|
13
|
Abstract
The aggregation of peptides/proteins is intimately related to a number of human diseases. More than 20 have been identified which aggregate into fibrils containing extensive β-sheet structures, and species generated in the aggregation processes (i.e., oligomers and fibrils) contribute to disease development. Amyloid-β peptide (designated Aβ), related to Alzheimer's disease (AD), is the representative example. The intensive aggregation property of Aβ also leads to difficulty in its synthesis. To improve the synthetic problem, we developed an O-acyl isopeptide of Aβ1-42, in which the N-acyl linkage (amide bond) of Ser(26) was replaced with an O-acyl linkage (ester bond) at the side chain. The O-acyl isopeptide demonstrated markedly higher water-solubility than that of Aβ1-42, while it quickly converted to intact monomer Aβ1-42 via an O-to-N acyl rearrangement under physiological conditions. Inhibition of the pathogenic aggregation of Aβ1-42 might be a therapeutic strategy for curing AD. We succeeded in the rational design and identification of a small molecule aggregation inhibitor based on a pharmacophore motif obtained from cyclo[-Lys-Leu-Val-Phe-Phe-]. Moreover, the inhibition of Aβ aggregation was achieved via oxygenation (i.e., incorporation of oxygen atoms to Aβ) using an artificial catalyst. We identified a selective, cell-compatible photo-oxygenation catalyst of Aβ, a flavin catalyst attached to an Aβ-binding peptide, which markedly decreased the aggregation potency and neurotoxicity of Aβ.
Collapse
Affiliation(s)
- Youhei Sohma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
14
|
Kalistratova A, Legrand B, Verdié P, Naydenova E, Amblard M, Martinez J, Subra G. A switchable stapled peptide. J Pept Sci 2016; 22:143-8. [PMID: 26785930 DOI: 10.1002/psc.2851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/13/2015] [Accepted: 12/15/2015] [Indexed: 11/06/2022]
Abstract
The O-N acyl transfer reaction has gained significant popularity in peptide and medicinal chemistry. This reaction has been successfully applied to the synthesis of difficult sequence-containing peptides, cyclic peptides, epimerization-free fragment coupling and more recently, to switchable peptide polymers. Herein, we describe a related strategy to facilitate the synthesis and purification of a hydrophobic stapled peptide. The staple consists of a serine linked through an amide bond formed from its carboxylic acid function and the side chain amino group of diaminopropionic acid and through an ester bond formed from its amino group and the side chain carboxylic acid function of aspartic acid. The α-amino group of serine was protonated during purification. Interestingly, when the peptide was placed at physiological pH, the free amino group initiated the O-N shift reducing the staple length by one atom, leading to a more hydrophobic stapled peptide.
Collapse
Affiliation(s)
- Aleksandra Kalistratova
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, ENSCM, Université de Montpellier, 15 avenue Charles Flahault, 34000, Montpellier, France.,University of Chemical Technology and Metallurgy, Sophia, Bulgaria
| | - Baptiste Legrand
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, ENSCM, Université de Montpellier, 15 avenue Charles Flahault, 34000, Montpellier, France
| | - Pascal Verdié
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, ENSCM, Université de Montpellier, 15 avenue Charles Flahault, 34000, Montpellier, France
| | - Emilia Naydenova
- University of Chemical Technology and Metallurgy, Sophia, Bulgaria
| | - Muriel Amblard
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, ENSCM, Université de Montpellier, 15 avenue Charles Flahault, 34000, Montpellier, France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, ENSCM, Université de Montpellier, 15 avenue Charles Flahault, 34000, Montpellier, France
| | - Gilles Subra
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, ENSCM, Université de Montpellier, 15 avenue Charles Flahault, 34000, Montpellier, France
| |
Collapse
|
15
|
Koga T, Mima K, Matsumoto T, Higashi N. Amino Acid-derived Polymer with Changeable Enzyme Degradability based on pH-induced Structural Conversion from Polyester to Polypeptide. CHEM LETT 2015. [DOI: 10.1246/cl.150880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomoyuki Koga
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University
| | - Kotaro Mima
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University
| | - Takahiro Matsumoto
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University
| | - Nobuyuki Higashi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University
| |
Collapse
|
16
|
Scaffolded multimers of hIAPP20–29 peptide fragments fibrillate faster and lead to different fibrils compared to the free hIAPP20–29 peptide fragment. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1890-1897. [DOI: 10.1016/j.bbapap.2015.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 12/17/2022]
|
17
|
Paradís-Bas M, Tulla-Puche J, Albericio F. The road to the synthesis of "difficult peptides". Chem Soc Rev 2015; 45:631-54. [PMID: 26612670 DOI: 10.1039/c5cs00680e] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The last decade has witnessed a renaissance of peptides as drugs. This progress, together with advances in the structural behavior of peptides, has attracted the interest of the pharmaceutical industry in these molecules as potential APIs. In the past, major peptide-based drugs were inspired by sequences extracted from natural structures of low molecular weight. In contrast, nowadays, the peptides being studied by academic and industrial groups comprise more sophisticated sequences. For instance, they consist of long amino acid chains and show a high tendency to form aggregates. Some researchers have claimed that preparing medium-sized proteins is now feasible with chemical ligation techniques, in contrast to medium-sized peptide syntheses. The complexity associated with the synthesis of certain peptides is exemplified by the so-called "difficult peptides", a concept introduced in the 80's. This refers to sequences that show inter- or intra-molecular β-sheet interactions significant enough to form aggregates during peptide synthesis. These structural associations are stabilized and mediated by non-covalent hydrogen bonds that arise on the backbone of the peptide and-depending on the sequence-are favored. The tendency of peptide chains to aggregate is translated into a list of common behavioral features attributed to "difficult peptides" which hinder their synthesis. In this regard, this manuscript summarizes the strategies used to overcome the inherent difficulties associated with the synthesis of known "difficult peptides". Here we evaluate several external factors, as well as methods to incorporate chemical modifications into sequences, in order to describe the strategies that are effective for the synthesis of "difficult peptides". These approaches have been classified and ordered to provide an extensive guide for achieving the synthesis of peptides with the aforementioned features.
Collapse
Affiliation(s)
- Marta Paradís-Bas
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain.
| | | | | |
Collapse
|
18
|
|
19
|
Desmet R, Pauzuolis M, Boll E, Drobecq H, Raibaut L, Melnyk O. Synthesis of Unprotected Linear or Cyclic O-Acyl Isopeptides in Water Using Bis(2-sulfanylethyl)amido Peptide Ligation. Org Lett 2015; 17:3354-7. [PMID: 26075704 DOI: 10.1021/acs.orglett.5b01614] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
SEA ligation proceeds chemoselectively at pH 3, i.e., at a pH where the O-acyl isopeptides are protected by protonation. This property was used for synthesizing unprotected O-acyl isopeptides in water, starting from peptide segments which are easily accessible by the Fmoc SPPS.
Collapse
Affiliation(s)
- Rémi Desmet
- UMR CNRS 8161, Université Lille, Pasteur Institute of Lille 59021 Lille, France
| | - Mindaugas Pauzuolis
- UMR CNRS 8161, Université Lille, Pasteur Institute of Lille 59021 Lille, France
| | - Emmanuelle Boll
- UMR CNRS 8161, Université Lille, Pasteur Institute of Lille 59021 Lille, France
| | - Hervé Drobecq
- UMR CNRS 8161, Université Lille, Pasteur Institute of Lille 59021 Lille, France
| | - Laurent Raibaut
- UMR CNRS 8161, Université Lille, Pasteur Institute of Lille 59021 Lille, France
| | - Oleg Melnyk
- UMR CNRS 8161, Université Lille, Pasteur Institute of Lille 59021 Lille, France
| |
Collapse
|
20
|
Paradís-Bas M, Tulla-Puche J, Albericio F. 2-Methoxy-4-methylsulfinylbenzyl: a backbone amide safety-catch protecting group for the synthesis and purification of difficult peptide sequences. Chemistry 2014; 20:15031-9. [PMID: 25280354 DOI: 10.1002/chem.201403668] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Indexed: 01/08/2023]
Abstract
The use of 2-methoxy-4-methylsulfinylbenzyl (Mmsb) as a new backbone amide-protecting group that acts as a safety-catch structure is proposed. Mmsb, which is stable during the elongation of the sequence and trifluoroacetic acid-mediated cleavage from the resin, improves the synthetic process as well as the properties of the quasi-unprotected peptide. Mmsb offers the possibility of purifying and characterizing complex peptide sequences, and renders the target peptide after NH4 I/TFA treatment and subsequent ether precipitation to remove the cleaved Mmsb moiety. First, the "difficult peptide" sequence H-(Ala)10-NH2 was selected as a model to optimize the new protecting group strategy. Second, the complex, bioactive Ac-(RADA)4-NH2 sequence was chosen to validate this methodology. The improvements in solid-phase peptide synthesis combined with the enhanced solubility of the quasi-unprotected peptides, as compared with standard sequences, made it possible to obtain purified Ac-(RADA)4-NH2. To extend the scope of the approach, the challenging Aβ(1-42) peptide was synthesized and purified in a similar manner. The proposed Mmsb strategy opens up the possibility of synthesizing other challenging small proteins.
Collapse
Affiliation(s)
- Marta Paradís-Bas
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, Barcelona, 08028 (Spain), Fax: (+34) 93-4037126; CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Baldiri Reixac 10, Barcelona, 08028 (Spain)
| | | | | |
Collapse
|
21
|
Yoshiya T, Maruno T, Uemura T, Kubo S, Kiso Y, Sohma Y, Yoshizawa-Kumagaye K, Kobayashi Y, Nishiuchi Y. Non-pretreated O-acyl isopeptide of amyloid β peptide 1-42 is monomeric with a random coil structure but starts to aggregate in a concentration-dependent manner. Bioorg Med Chem Lett 2014; 24:3861-4. [PMID: 25017031 DOI: 10.1016/j.bmcl.2014.06.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 11/25/2022]
Abstract
An isopeptide of amyloid β peptide 1-42 (isoAβ42) was considered as a non-aggregative precursor molecule for the highly aggregative Aβ42. It has been applied to biological studies after several pretreatments. Here we report that isoAβ42 is monomeric with a random coil structure at 40 μM without any pretreatment. But we also found that isoAβ42 retains a slight aggregative nature, which is significantly weaker than that of the native Aβ42.
Collapse
Affiliation(s)
- Taku Yoshiya
- Peptide Institute, Inc., 7-2-9 Saito-Asagi, Ibaraki-Shi, Osaka 567-0085, Japan.
| | - Takahiro Maruno
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Tsuyoshi Uemura
- Peptide Institute, Inc., 7-2-9 Saito-Asagi, Ibaraki-Shi, Osaka 567-0085, Japan
| | - Shigeru Kubo
- Peptide Institute, Inc., 7-2-9 Saito-Asagi, Ibaraki-Shi, Osaka 567-0085, Japan
| | - Yoshiaki Kiso
- Laboratory of Peptide Science, Nagahama Institute of Bio-Science and Technology, Shiga 526-0829, Japan
| | - Youhei Sohma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | | | - Yuji Kobayashi
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Yuji Nishiuchi
- Peptide Institute, Inc., 7-2-9 Saito-Asagi, Ibaraki-Shi, Osaka 567-0085, Japan; Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| |
Collapse
|
22
|
King JV, Liang WG, Scherpelz KP, Schilling AB, Meredith SC, Tang WJ. Molecular basis of substrate recognition and degradation by human presequence protease. Structure 2014; 22:996-1007. [PMID: 24931469 DOI: 10.1016/j.str.2014.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 04/12/2014] [Accepted: 05/01/2014] [Indexed: 01/17/2023]
Abstract
Human presequence protease (hPreP) is an M16 metalloprotease localized in mitochondria. There, hPreP facilitates proteostasis by utilizing an ∼13,300-Å(3) catalytic chamber to degrade a diverse array of potentially toxic peptides, including mitochondrial presequences and β-amyloid (Aβ), the latter of which contributes to Alzheimer disease pathogenesis. Here, we report crystal structures for hPreP alone and in complex with Aβ, which show that hPreP uses size exclusion and charge complementation for substrate recognition. These structures also reveal hPreP-specific features that permit a diverse array of peptides, with distinct distributions of charged and hydrophobic residues, to be specifically captured, cleaved, and have their amyloidogenic features destroyed. SAXS analysis demonstrates that hPreP in solution exists in dynamic equilibrium between closed and open states, with the former being preferred. Furthermore, Aβ binding induces the closed state and hPreP dimerization. Together, these data reveal the molecular basis for flexible yet specific substrate recognition and degradation by hPreP.
Collapse
Affiliation(s)
- John V King
- Ben May Department for Cancer Research, The University of Chicago, 929 E. 57(th) Street, Chicago, IL 60637, USA
| | - Wenguang G Liang
- Ben May Department for Cancer Research, The University of Chicago, 929 E. 57(th) Street, Chicago, IL 60637, USA
| | - Kathryn P Scherpelz
- Department of Biochemistry and Molecular Biophysics, The University of Chicago, Chicago, IL 60637, USA
| | - Alexander B Schilling
- Mass Spectrometry, Metabolomics, and Proteomics Facility, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Stephen C Meredith
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Wei-Jen Tang
- Ben May Department for Cancer Research, The University of Chicago, 929 E. 57(th) Street, Chicago, IL 60637, USA.
| |
Collapse
|
23
|
Yoshiya T, Uemura T, Maruno T, Kubo S, Kiso Y, Sohma Y, Kobayashi Y, Yoshizawa-Kumagaye K, Nishiuchi Y. O
-Acyl isopeptide method: development of an O
-acyl isodipeptide unit for Boc SPPS
and its application to the synthesis of Aβ
1-42 isopeptide. J Pept Sci 2014; 20:669-74. [DOI: 10.1002/psc.2662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 05/09/2014] [Accepted: 05/09/2014] [Indexed: 01/21/2023]
Affiliation(s)
| | | | - Takahiro Maruno
- Graduate School of Engineering; Osaka University; Osaka 565-0871 Japan
| | | | - Yoshiaki Kiso
- Laboratory of Peptide Science; Nagahama Institute of Bio-Science and Technology; Shiga 526-0829 Japan
| | - Youhei Sohma
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; Tokyo 113-0033 Japan
| | - Yuji Kobayashi
- Graduate School of Engineering; Osaka University; Osaka 565-0871 Japan
| | | | - Yuji Nishiuchi
- Peptide Institute, Inc.; Osaka 567-0085 Japan
- Graduate School of Science; Osaka University; Osaka 560-0043 Japan
| |
Collapse
|
24
|
Panda SS, Hall CD, Oliferenko AA, Katritzky AR. Traceless chemical ligation from S-, O-, and N-acyl isopeptides. Acc Chem Res 2014; 47:1076-87. [PMID: 24617996 DOI: 10.1021/ar400242q] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Peptides are ubiquitous in nature where they play crucial roles as catalysts (enzymes), cell membrane ion transporters, and structural elements (proteins) within biological systems. In addition, both linear and cyclic peptides have found use as pharmaceuticals and components of various conjugate molecular systems. Small wonder then that chemists throughout the ages have sought to mimic nature by synthesis of the amide polymers known as peptides and proteins. The fundamental reaction in the formation of a peptide bond is condensation of an amine of one amino acid with the activated carbonyl group of another. This "fragment condensation" has been achieved in many ways both in solution and by solid-phase peptide synthesis (SPSS) on resin. The most successful method for in-solution coupling is known as native chemical ligation (NCL), and the technique dates back to the pioneering work of Wieland (1953) and subsequently Kent (1994) among many others. This Account builds on the established principles of NCL as applied specifically to S-, O-, and N-isopeptides, molecules that are generally more soluble and less prone to aggregation than native peptides. This Account also covers NCL of isopeptides containing terminal and nonterminal S-acylated cysteine units, reactions that enable the synthesis of native peptides from S-acyl peptides without the use of auxiliaries. With C-terminal S-acyl isopeptides, NCL was carried out under microwave irradiation in phosphate buffer (pH 7.3) at 50 °C. Intramolecular acyl migration was observed through 5-19-membered transition states with relative rates, as assessed by product analysis, in the order, 5 > 10 > 11 > 14, 16, or 17 > 12 > 13, 15, or 19 > 18 ≫ 9 > 8. The rate/pH profile for the 15-membered TS showed a maximum for ligated product versus transacylation at pH 7.0-7.3 presumably associated with the pKa of the N-nucleophile in the hydrogen-bonded TS. Cysteine occurs at low abundance (1.7%) in natural peptides and is rarely available in a terminal position thus limiting the utility of the method. This Account reports, however, NCL at nonterminal acyl cysteine through 5-, 8-, 11-, and 14-membered TSs with relative rates of ligation in the order, 5 ≫ 14 > 11 ≫ 8, thus paralleling the results with acylated terminal cysteine residues. In an obvious sequel to the work with acylated cysteine, we discuss intramolecular O- to N-acyl shift in O-acyl serine and O-acyl tyrosine isopeptides where the story becomes more complex in terms of viable conditions and optimum size of the cyclic TS. N- to N-acyl migration in acyl tryptophan isopeptides is described, and finally, chemical ligation is applied to the synthesis of cyclic peptides. Conformational analysis and quantum chemical calculations are used to rationalize ligation through a range of cyclic transition states. This Account highlights the fact that NCL of acyl isopeptides is an extremely useful strategy for the synthesis of a wide variety of native peptides in good yields and under mild conditions. Mechanistic aspects of the ligations are not fully resolved, but theoretical studies indicate that hydrogen bonding within the various cyclic transition states plays a major role.
Collapse
Affiliation(s)
- Siva S. Panda
- Center
for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - C. Dennis Hall
- Center
for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Alexander A. Oliferenko
- Center
for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Alan R. Katritzky
- Center
for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
- Chemistry Department, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
25
|
Abstract
The chemical synthesis of peptides or small proteins is often an important step in many research projects and has stimulated the development of numerous chemical methodologies. The aim of this review is to give a substantial overview of the solid phase methods developed for the production or purification of polypeptides. The solid phase peptide synthesis (SPPS) technique has facilitated considerably the access to short peptides (<50 amino acids). However, its limitations for producing large homogeneous peptides have stimulated the development of solid phase covalent or non-covalent capture purification methods. The power of the native chemical ligation (NCL) reaction for protein synthesis in aqueous solution has also been adapted to the solid phase by the combination of novel linker technologies, cysteine protection strategies and thioester or N,S-acyl shift thioester surrogate chemistries. This review details pioneering studies and the most recent publications related to the solid phase chemical synthesis of large peptides and proteins.
Collapse
|
26
|
A new class of aggregation inhibitor of amyloid-β peptide based on an O-acyl isopeptide. Bioorg Med Chem 2013; 21:6323-7. [DOI: 10.1016/j.bmc.2013.08.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 11/18/2022]
|
27
|
Yoshiya T, Tsuda S, Mochizuki M, Hidaka K, Tsuda Y, Kiso Y, Kageyama S, Ii H, Yoshiki T, Nishiuchi Y. A Fluorogenic Probe for γ-Glutamyl Cyclotransferase: Application of an Enzyme-Triggered O-to-N Acyl Migration-Type Reaction. Chembiochem 2013; 14:2110-3. [DOI: 10.1002/cbic.201300481] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Indexed: 01/02/2023]
|
28
|
Abstract
O-Acyl isopeptides, in which the N-acyl linkage on the hydroxyamino acid residue (e.g., Ser and Thr) is replaced with an O-acyl linkage, generally possess superior water-solubility to their corresponding native peptides, as well as other distinct physicochemical properties. In addition, O-acyl isopeptides can be rapidly converted into their corresponding native peptide under neutral aqueous conditions through an O-to-N acyl migration. By exploiting these characteristics, researchers have applied the O-acyl isopeptide method to various peptide-synthesis fields, such as the synthesis of aggregative peptides and convergent peptide synthesis. This O-acyl-isopeptide approach also serves as a means to control the biological function of the peptide in question. Herein, we report the synthesis of O-acyl isopeptides and some of their applications.
Collapse
Affiliation(s)
- Youhei Sohma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Tokyo 113-0033, Japan.
| | | |
Collapse
|
29
|
Sohma Y, Yamasaki M, Kawashima H, Taniguchi A, Yamashita M, Akaji K, Mukai H, Kiso Y. Comparative properties of Aβ1-42, Aβ11-42, and [Pyr¹¹]Aβ11-42 generated from O-acyl isopeptides. Bioorg Med Chem Lett 2013; 23:1326-9. [PMID: 23352512 DOI: 10.1016/j.bmcl.2012.12.082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 12/22/2012] [Accepted: 12/27/2012] [Indexed: 10/27/2022]
Abstract
The use of water-soluble O-acyl isopeptides enabled us to investigate the biochemical properties of Aβ11-42 species, by preparing highly concentrated stock solutions after a pretreatment. Aβ11-42 and [Pyr(11)]Aβ11-42 showed comparable aggregation capability and cytotoxicity, suggesting that the pyroglutamate modification at Glu(11) does not have a crucial role in these events. However, given that Aβ11-42 is converted to [Pyr(11)]Aβ11-42 by a glutamyl cyclase in vivo, the potential aggregative and cytotoxic nature of [Pyr(11)]Aβ11-42 that was observed in the present study provides valuable insights into the pathological functions of pyroglutamate-modified Aβ species in Alzheimer's disease.
Collapse
Affiliation(s)
- Youhei Sohma
- Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Hussein WM, Liu TY, Toth I, Skwarczynski M. Microwave-assisted synthesis of difficult sequence-containing peptides using the isopeptide method. Org Biomol Chem 2013; 11:2370-6. [DOI: 10.1039/c3ob00030c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Monbaliu JCM, Katritzky AR. Recent trends in Cys- and Ser/Thr-based synthetic strategies for the elaboration of peptide constructs. Chem Commun (Camb) 2012; 48:11601-22. [DOI: 10.1039/c2cc34434c] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Sohma Y, Kitamura H, Kawashima H, Hojo H, Yamashita M, Akaji K, Kiso Y. Synthesis of an O-acyl isopeptide by using native chemical ligation to efficiently construct a hydrophobic polypeptide. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.10.116] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
33
|
Self-assembly pathways of E22Δ-type amyloid β peptide mutants generated from non-aggregative O-acyl isopeptide precursors. Bioorg Med Chem 2011; 19:3787-92. [PMID: 21612934 DOI: 10.1016/j.bmc.2011.04.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 04/28/2011] [Accepted: 04/29/2011] [Indexed: 11/24/2022]
Abstract
The recently identified E22Δ-type amyloid β peptide (Aβ) mutants are reported to favor oligomerization over fibrillization and to exhibit more-potent synaptotoxicity than does wild-type (WT) Aβ. Aβ(E22Δ) mutants can thus be expected to serve as tools for clarifying the impact of Aβ oligomers in Alzheimer's disease (or Alzheimer's-type dementia). However, the biochemical and biophysical properties of Aβ(E22Δ) have not been conclusively determined. Here, we evaluated the self-assembly pathways of Aβ(E22Δ) mutants generated from water-soluble, non-aggregative O-acyl isopeptide precursors. Circular dichroism spectroscopy, Western blot analysis, and thioflavin-T fluorescence intensity and cellular toxicity assays suggest that the self-assembly pathways of Aβ(E22Δ) differed from those of Aβ(WT). Aβ1-40(E22Δ) underwent a rapid random coil→β-sheet conformational change in its monomeric or low-molecular-weight oligomeric states, whereas Aβ1-40(WT) self-assembled gradually without losing its propensity to form random coil structures. The Aβ1-42(E22Δ) monomer formed β-sheet-rich oligomers more rapidly than did Aβ1-42(WT). Additionally, the Aβ1-42(E22Δ) oligomers appear to differ from Aβ1-42(WT) oligomers in size, shape, or both. These results should provide new insights into the functions of Aβ(E22Δ) mutants.
Collapse
|
34
|
Yoshiya T, Higa A, Abe N, Fukao F, Kuruma T, Toda Y, Sohma Y, Kiso Y. Click Peptide concept: o-acyl isopeptide of islet amyloid polypeptide as a nonaggregative precursor molecule. Chembiochem 2011; 12:1216-22. [PMID: 21538760 DOI: 10.1002/cbic.201100025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Indexed: 12/24/2022]
Abstract
The O-acyl isopeptide (1) of islet amyloid polypeptide (IAPP), which contains an ester moiety at both Ala8-Thr9 and Ser19-Ser20, was prepared by sequential segment condensation based on the O-acyl isopeptide method. Isopeptide 1 possessed nonaggregative properties, retaining its random coil structure under the acidic conditions; this suggests that the insertion of the O-acyl isopeptide structures in IAPP suppressed aggregation of the molecule. As a result of the rapid O-to-N acyl shift of 1 under neutral pH, in situ-formed IAPP adopted a random-coil structure at the start of the experiment, and then underwent conformational change to α-helix/β-sheet mixed structures as well as aggregation. The click peptide strategy with the nonaggregative precursor molecule 1 could be a useful experimental tool to identify the functions of IAPP, by overcoming the handling difficulties that arise from IAPP's intense and uncontrollable self-assembling nature.
Collapse
Affiliation(s)
- Taku Yoshiya
- Kyoto Pharmaceutical University, Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, Yamashina-ku, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Yoshiya T, Hasegawa Y, Kawamura W, Kawashima H, Sohma Y, Kimura T, Kiso Y. S-acyl isopeptide method: Use of allyl-type protective group for improved preparation of thioester-containing S-acyl isopeptides by Fmoc-based SPPS. Biopolymers 2011; 96:228-39. [DOI: 10.1002/bip.21410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
36
|
Sohma Y, Hirayama Y, Taniguchi A, Mukai H, Kiso Y. ‘Click peptide’ using production of monomer Aβ from the O-acyl isopeptide: Application to assay system of aggregation inhibitors and cellular cytotoxicity. Bioorg Med Chem 2011; 19:1729-33. [DOI: 10.1016/j.bmc.2011.01.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 11/16/2022]
|
37
|
El Khatib M, Jauregui L, Tala SR, Khelashvili L, Katritzky AR. Solution-phase synthesis of chiral O-acyl isodipeptides. MEDCHEMCOMM 2011. [DOI: 10.1039/c1md00130b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
A modified protocol to prepare seed-free starting solutions of amyloid-β (Aβ)₁₋₄₀ and Aβ₁₋₄₂ from the corresponding depsipeptides. Anal Biochem 2010; 411:297-9. [PMID: 21185802 DOI: 10.1016/j.ab.2010.12.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 12/15/2010] [Accepted: 12/17/2010] [Indexed: 11/20/2022]
Abstract
Preparing reliable, seed-free stock solutions of the highly amyloidogenic peptides amyloid-β (Aβ) is difficult. Besides the formation of aggregates during synthesis and storage, dissolution of the peptide is a critical step because vortexing can induce aggregation. To overcome this, synthesis of the more water-soluble depsi-Aβ(1-42) peptide, from which the native sequence is easily obtained, has been suggested. We further refined this technique, including a cutoff filtration step and switching the depsipeptide in basic conditions, to stabilize the formed native peptide. The obtained solutions of native Aβ(1-40) and Aβ(1-42) peptides were homogeneous and aggregate free, as indicated by thioflavin T and circular dichroism analysis.
Collapse
|
39
|
Beisswenger M, Yoshiya T, Kiso Y, Cabrele C. Synthesis and conformation of an analog of the helix-loop-helix domain of the Id1 protein containing the O-acyl iso-prolyl-seryl switch motif. J Pept Sci 2010; 16:303-8. [PMID: 20474042 DOI: 10.1002/psc.1239] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Synthetic peptides reproducing the helix-loop-helix (HLH) domains of the Id proteins fold into highly stable helix bundles upon self-association. Recently, we have shown that the replacement of the dipeptide Val-Ser at the loop-helix-2 junction with the corresponding O-acyl iso-dipeptide leads to a completely unfolded state that only refolds after intramolecular O --> N acyl migration. Herein, we report on an Id HLH analog based on the substitution of the Pro-Ser motif at the helix-1-loop junction with the corresponding O-acyl iso-dipeptide. This analog has been successfully synthesized by solid-phase Fmoc chemistry upon suppression of DKP formation. No secondary structure could be detected for the O-acyl iso-peptide before its conversion into the native form by O --> N acyl shift. These results show that the loop-helix junctions are determinant for the folded/unfolded state of the Id HLH domain. Further, despite the high risk of DKP formation, peptides containing O-acyl iso-Pro-Ser/Thr units are synthetically accessible by Fmoc chemistry.
Collapse
|
40
|
Bozso Z, Penke B, Simon D, Laczkó I, Juhász G, Szegedi V, Kasza A, Soós K, Hetényi A, Wéber E, Tóháti H, Csete M, Zarándi M, Fülöp L. Controlled in situ preparation of A beta(1-42) oligomers from the isopeptide "iso-A beta(1-42)", physicochemical and biological characterization. Peptides 2010; 31:248-56. [PMID: 19995586 DOI: 10.1016/j.peptides.2009.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 12/01/2009] [Accepted: 12/01/2009] [Indexed: 11/25/2022]
Abstract
Beta-amyloid (A beta) peptides play a crucial role in the pathology of the neurodegeneration in Alzheimer's disease (AD). Biological experiments (both in vitro and animal model studies of AD) require synthetic A beta peptides of standard quality, aggregation grade, neurotoxicity and water solubility. The synthesis of A beta peptides has been difficult, owing to their hydrophobic character, poor solubility and high tendency for aggregation. Recently an isopeptide precursor (iso-A beta(1-42)) was synthesized by Fmoc-chemistry and transformed at neutral pH to A beta(1-42) by O-->N acyl migration in a short period of time. We prepared the same precursor peptide using Boc-chemistry and studied the transformation to A beta(1-42) by acyl migration. The peptide conformation and aggregation processes were studied by several methods (circular dichroism, atomic force and transmission electron microscopy, dynamic light scattering). The biological activity of the synthetic A beta(1-42) was measured by ex vivo (long-term potentiation studies in rat hippocampal slices) and in vivo experiments (spatial learning of rats). It was proven that O-->N acyl migration of the precursor isopeptide results in a water soluble oligomeric mixture of neurotoxic A beta(1-42). These oligomers are formed in situ just before the biological experiments and their aggregation grade could be standardized.
Collapse
Affiliation(s)
- Zsolt Bozso
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Tailhades J, Gidel MA, Grossi B, Lécaillon J, Brunel L, Subra G, Martinez J, Amblard M. Synthesis of Peptide Alcohols on the Basis of an O-N Acyl-Transfer Reaction. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200904276] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Tailhades J, Gidel MA, Grossi B, Lécaillon J, Brunel L, Subra G, Martinez J, Amblard M. Synthesis of Peptide Alcohols on the Basis of an O-N Acyl-Transfer Reaction. Angew Chem Int Ed Engl 2009; 49:117-20. [DOI: 10.1002/anie.200904276] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
TANIGUCHI A. Development of Click Peptide: Stimuli-responsive Precursor Producing Alzheimer's Disease-related Amyloid β Peptide. YAKUGAKU ZASSHI 2009; 129:1227-32. [DOI: 10.1248/yakushi.129.1227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Wang H, Kakizawa T, Taniguchi A, Mizuguchi T, Kimura T, Kiso Y. Synthesis of amyloid β peptide 1–42 (E22Δ) click peptide: pH-triggered in situ production of its native form. Bioorg Med Chem 2009; 17:4881-7. [DOI: 10.1016/j.bmc.2009.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 06/05/2009] [Accepted: 06/11/2009] [Indexed: 02/04/2023]
|
45
|
Taniguchi A, Sohma Y, Hirayama Y, Mukai H, Kimura T, Hayashi Y, Matsuzaki K, Kiso Y. "Click peptide": pH-triggered in situ production and aggregation of monomer Abeta1-42. Chembiochem 2009; 10:710-5. [PMID: 19222037 DOI: 10.1002/cbic.200800765] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The intense and uncontrollable self-assembling nature of amyloid beta peptide (Abeta) 1-42 is known to cause difficulties in preparing monomeric Abeta1-42; this results in irreproducible or discrepant study outcomes. Herein, we report novel features of a pH click peptide of Abeta1-42 that was designed to overcome these problems. The click peptide is a water-soluble precursor peptide of Abeta1-42 with an O-acyl isopeptide structure between the Gly25-Ser26 sequence. The click peptide adopts and retains a monomeric, random coil state under acidic conditions. Upon change to neutral pH (pH click), the click peptide converts to Abeta1-42 promptly (t(1/2) approximately 10 s) and quantitatively through an O-to-N intramolecular acyl migration. As a result of this quick and irreversible conversion, monomer Abeta1-42 with a random coil structure is produced in situ. Moreover, the oligomerization, amyloid fibril formation and conformational changes of the produced Abeta1-42 can be observed over time. This click peptide strategy should provide a reliable experimental system to investigate the pathological role of Abeta1-42 in Alzheimer's disease.
Collapse
Affiliation(s)
- Atsuhiko Taniguchi
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, 21st Century COE Program, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Yoshiya T, Kawashima H, Sohma Y, Kimura T, Kiso Y. O-acyl isopeptide method: efficient synthesis of isopeptide segment and application to racemization-free segment condensation. Org Biomol Chem 2009; 7:2894-904. [PMID: 19582299 DOI: 10.1039/b903624e] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the establishment of the O-acyl isopeptide method-based racemization-free segment condensation reaction toward future chemical protein synthesis. Peptide segments containing C-terminal O-acyl Ser/Thr residues were successfully synthesized by use of a lower nucleophilic base cocktail for Fmoc removal, and then coupled to an amino group of a peptide-resin without side reactions or epimerization. We also succeeded in performing the segment condensation in a sequential manner and in solution phase conditions as well.
Collapse
Affiliation(s)
- Taku Yoshiya
- Department of Medicinal Chemistry, Division of Medicinal Chemical Sciences, Center for Frontier Research in Medicinal Science, 21st Century COE program, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, 607-8412, Japan
| | | | | | | | | |
Collapse
|
47
|
Application of Intramolecular Migration Reaction in Peptide Chemistry to Chemical Biology, Chemical Pharmaceutics and Medicinal Chemistry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009. [DOI: 10.1007/978-0-387-73657-0_223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
48
|
Yoshiya T, Ito N, Kimura T, Kiso Y. Isopeptide method: development of S-acyl isopeptide method for the synthesis of difficult sequence-containing peptides. J Pept Sci 2008; 14:1203-8. [PMID: 18613286 DOI: 10.1002/psc.1053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A novel strategy for a more efficient synthesis of difficult sequence-containing peptides, the S-acyl isopeptide method, was developed and successfully applied. A model pentapeptide Ac-Val-Val-Cys-Val-Val-NH2 was synthesized via its water-soluble S-acyl isopeptide using an S-acyl isodipeptide unit, Boc-Cys(Fmoc-Val)-OH. An S-acyl isopeptide possessing excellent water solubility could be readily and quantitatively converted to the native peptide via an S--N intramolecular acyl migration reaction at pH 7.4. Thus, the S-acyl isopeptide method provides a useful tool in peptide chemistry.
Collapse
Affiliation(s)
- Taku Yoshiya
- Department of Medicinal Chemistry, Division of Medicinal Chemical Sciences, Center for Frontier Research in Medicinal Science, 21st Century COE Program, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, Japan
| | | | | | | |
Collapse
|
49
|
Taniguchi A, Skwarczynski M, Sohma Y, Okada T, Ikeda K, Prakash H, Mukai H, Hayashi Y, Kimura T, Hirota S, Matsuzaki K, Kiso Y. Controlled Production of Amyloid β Peptide from a Photo-Triggered, Water-Soluble Precursor “Click Peptide“. Chembiochem 2008; 9:3055-65. [DOI: 10.1002/cbic.200800503] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Nguyen JT, Hamada Y, Kimura T, Kiso Y. Design of potent aspartic protease inhibitors to treat various diseases. Arch Pharm (Weinheim) 2008; 341:523-35. [PMID: 18763714 DOI: 10.1002/ardp.200700267] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this retrospective, personal review covering our research from the late 1980s until 2007, we outline nearly two-decade worth of our own work on several aspartic protease inhibitors including those affecting renin, HIV-1 protease, plasmepsins, beta-secretase, and HTLV-I protease and we report on aspartic protease inhibitors as potential drugs to treat hypertension, AIDS, malaria, Alzheimer's disease and adult T-cell leukemia, HTLV-I associated myelopathy / tropical spastic paraparesis, and various, respectively, associated diseases. Herein, we describe our methods for rational substrate-based drug design of peptidomimetics that potently inhibit the activity of renin, HIV-1 protease, plasmepsins, beta-secretase, and HTLV-I protease accordingly, using an appropriately selected inhibitory residue that contained a hydroxymethylcarbonyl isostere. Although this non-hydrolyzable isostere mimics the transition state that is formed during protein cleavage of a substrate, the isostere-containing inhibitor is not cleaved. We highlight our optimization studies in which we used various techniques and tools such as truncation studies, natural and non-natural amino acid substitution studies, various moieties to promote chemical and pharmacological stability, X-ray crystallography, computer-assisted docking and dynamic simulations, quantitative structure-activity relationship studies, and various other methods that this review can barely mention.
Collapse
Affiliation(s)
- Jeffrey-Tri Nguyen
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science and 21st Century COE Program, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, Japan
| | | | | | | |
Collapse
|