1
|
Zhang L, Li X, Liu L, Li Y, Wang J. The Adequate Amount of Acid-Base Buffer for Electrochemical Investigation of Proton-Coupled Electron Transfer Reactions. ChemistrySelect 2018. [DOI: 10.1002/slct.201800297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lijuan Zhang
- College of Chemistry; Liaoning University; Shenyang 110036, P.R. China
| | - Xiao Li
- College of Chemistry; Liaoning University; Shenyang 110036, P.R. China
| | - Lian Liu
- College of Chemistry; Liaoning University; Shenyang 110036, P.R. China
| | - Yanfang Li
- College of Chemistry; Liaoning University; Shenyang 110036, P.R. China
| | - Jianguo Wang
- College of Chemistry; Liaoning University; Shenyang 110036, P.R. China
| |
Collapse
|
2
|
Matsukawa Y, Hirashita T, Araki S. 5-Nitroso-1,3-diphenyltetrazolium salt as a mediator for the oxidation of alcohols. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.08.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Jakobušić Brala C, Fabijanić I, Karković Marković A, Pilepić V. The average local ionization energy and Fukui function of l-ascorbate, the local reactivity descriptors of antioxidant reactivity. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Kandathil SM, Driscoll MD, Dunn RV, Scrutton NS, Hay S. Proton tunnelling and promoting vibrations during the oxidation of ascorbate by ferricyanide? Phys Chem Chem Phys 2014; 16:2256-9. [PMID: 24394921 DOI: 10.1039/c3cp55131h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combination of the temperature- and pressure-dependencies of the kinetic isotope effect on the proton coupled electron transfer during ascorbate oxidation by ferricyanide suggests that this reference reaction may exploit vibrationally assisted quantum tunnelling of the transferred proton.
Collapse
Affiliation(s)
- Shaun M Kandathil
- Manchester Institute of Biotechnology (MIB) and Faculty of Life Sciences, University of Manchester, 131 Princess St., Manchester, UK M1 7DN.
| | | | | | | | | |
Collapse
|
5
|
Weinberg DR, Gagliardi CJ, Hull JF, Murphy CF, Kent CA, Westlake BC, Paul A, Ess DH, McCafferty DG, Meyer TJ. Proton-Coupled Electron Transfer. Chem Rev 2012; 112:4016-93. [DOI: 10.1021/cr200177j] [Citation(s) in RCA: 1178] [Impact Index Per Article: 90.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David R. Weinberg
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
- Department of Physical and Environmental
Sciences, Colorado Mesa University, 1100 North Avenue, Grand Junction,
Colorado 81501-3122, United States
| | - Christopher J. Gagliardi
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Jonathan F. Hull
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Christine Fecenko Murphy
- Department
of Chemistry, B219
Levine Science Research Center, Box 90354, Duke University, Durham,
North Carolina 27708-0354, United States
| | - Caleb A. Kent
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Brittany C. Westlake
- The American Chemical Society,
1155 Sixteenth Street NW, Washington, District of Columbia 20036,
United States
| | - Amit Paul
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Daniel H. Ess
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Dewey Granville McCafferty
- Department
of Chemistry, B219
Levine Science Research Center, Box 90354, Duke University, Durham,
North Carolina 27708-0354, United States
| | - Thomas J. Meyer
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| |
Collapse
|
6
|
Zhu XQ, Mu YY, Li XT. What are the differences between ascorbic acid and NADH as hydride and electron sources in vivo on thermodynamics, kinetics, and mechanism? J Phys Chem B 2011; 115:14794-811. [PMID: 22035071 DOI: 10.1021/jp2067974] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ascorbic acid (AscH(2)) and dihydronicotinamide adenine dinucleotide (NADH) are two very important natural redox cofactors, which can be used as hydride, electron, and hydrogen atom sources to take part in many important bioreduction processes in vivo. The differences of the two natural reducing agents as hydride, hydrogen atom, and electron donors in thermodynamics, kinetics, and mechanisms were examined by using 5,6-isopropylidene ascorbate (iAscH(-)) and β-D-glucopyranosyl-1,4-dihydronicotinamide acetate (GluNAH) as their models, respectively. The results show that the hydride-donating ability of iAscH(-) is smaller than that of GluNAH by 6.0 kcal/mol, but the electron-donating ability and hydrogen-donating ability of iAscH(-) are larger than those of GluNAH by 20.8 and 8.4 kcal/mol, respectively, which indicates that iAscH(-) is a good electron donor and a good hydrogen atom donor, but GluNAH is a good hydride donor. The kinetic intrinsic barrier energy of iAscH(-) to release hydride anion in acetonitrile is larger than that of GluNAH to release hydride anion in acetonitrile by 6.9 kcal/mol. The mechanisms of hydride transfer from iAscH(-) and GluNAH to phenylxanthium perchlorate (PhXn(+)), a well-known hydride acceptor, were examined, and the results show that hydride transfer from GluNAH adopted a one-step mechanism, but the hydride transfer from iAscH(-) adopted a two-step mechanism (e-H(•)). The thermodynamic relation charts (TRC) of the iAscH(-) family (including iAscH(-), iAscH(•), iAsc(•-), and iAsc) and of the GluNAH family (including GluNAH, GluNAH(•+), GluNA(•), and GluNA(+)) in acetonitrile were constructed as Molecule ID Cards of iAscH(-) and of GluNAH in acetonitrile. By using the Molecule ID Cards of iAscH(-) and GluNAH, the character chemical properties not only of iAscH(-) and GluNAH but also of the various reaction intermediates of iAscH(-) and GluNAH all have been quantitatively diagnosed and compared. It is clear that these comparisons of the thermodynamics, kinetics, and mechanisms between iAscH(-) and GluNAH as hydride and electron donors in acetonitrile should be quite important and valuable to diagnose and understand the different roles and functions of ascorbic acid and NADH as hydride, hydrogen atom, and electron sources in vivo.
Collapse
Affiliation(s)
- Xiao-Qing Zhu
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Tianjin, China.
| | | | | |
Collapse
|
7
|
Warren JJ, Mayer JM. Tuning of the thermochemical and kinetic properties of ascorbate by its local environment: solution chemistry and biochemical implications. J Am Chem Soc 2010; 132:7784-93. [PMID: 20476757 PMCID: PMC2921859 DOI: 10.1021/ja102337n] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ascorbate (vitamin C) is a ubiquitous biological cofactor. While its aqueous solution chemistry has long been studied, many in vivo reactions of ascorbate occur in enzyme active sites or at membrane interfaces, which have varying local environments. This report shows that the rate and driving force of oxidations of two ascorbate derivatives by the TEMPO radical (2,2',6,6'-tetramethylpiperidin-1-oxyl) in acetonitrile are very sensitive to the presence of various additives. These reactions proceed by the transfer of a proton and an electron (a hydrogen atom), as is typical of biological ascorbate reactions. The measured rate and equilibrium constants vary substantially with added water or other polar solutes in acetonitrile solutions, indicating large shifts in the reducing power of ascorbate. The correlation of rate and equilibrium constants indicates that this effect has a thermochemical origin rather than being a purely kinetic effect. This contrasts with previous examples of solvent effects on hydrogen atom transfer reactions. Potential biological implications of this apparently unique effect are discussed.
Collapse
Affiliation(s)
- Jeffrey J. Warren
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700
| | - James M. Mayer
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700
| |
Collapse
|
8
|
Sajenko I, Pilepić V, Jakobušić Brala C, Uršić S. Solvent Dependence of the Kinetic Isotope Effect in the Reaction of Ascorbate with the 2,2,6,6-Tetramethylpiperidine-1-oxyl Radical: Tunnelling in a Small Molecule Reaction. J Phys Chem A 2010; 114:3423-30. [DOI: 10.1021/jp911086n] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ivana Sajenko
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1. Zagreb, Croatia
| | - Viktor Pilepić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1. Zagreb, Croatia
| | | | - Stanko Uršić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1. Zagreb, Croatia
| |
Collapse
|
9
|
Wu A, Mayer JM. Hydrogen atom transfer reactions of a ruthenium imidazole complex: hydrogen tunneling and the applicability of the Marcus cross relation. J Am Chem Soc 2008; 130:14745-54. [PMID: 18841973 PMCID: PMC2633126 DOI: 10.1021/ja805067h] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reaction of Ru(II)(acac)2(py-imH) (Ru(II)imH) with TEMPO(*) (2,2,6,6-tetramethylpiperidine-1-oxyl radical) in MeCN quantitatively gives Ru(III)(acac)2(py-im) (Ru(III)im) and the hydroxylamine TEMPO-H by transfer of H(*) (H(+) + e(-)) (acac = 2,4-pentanedionato, py-imH = 2-(2'-pyridyl)imidazole). Kinetic measurements of this reaction by UV-vis stopped-flow techniques indicate a bimolecular rate constant k(3H) = 1400 +/- 100 M(-1) s(-1) at 298 K. The reaction proceeds via a concerted hydrogen atom transfer (HAT) mechanism, as shown by ruling out the stepwise pathways of initial proton or electron transfer due to their very unfavorable thermochemistry (Delta G(o)). Deuterium transfer from Ru(II)(acac)2(py-imD) (Ru(II)imD) to TEMPO(*) is surprisingly much slower at k(3D) = 60 +/- 7 M(-1) s(-1), with k(3H)/k(3D) = 23 +/- 3 at 298 K. Temperature-dependent measurements of this deuterium kinetic isotope effect (KIE) show a large difference between the apparent activation energies, E(a3D) - E(a3H) = 1.9 +/- 0.8 kcal mol(-1). The large k(3H)/k(3D) and DeltaE(a) values appear to be greater than the semiclassical limits and thus suggest a tunneling mechanism. The self-exchange HAT reaction between Ru(II)imH and Ru(III)im, measured by (1)H NMR line broadening, occurs with k(4H) = (3.2 +/- 0.3) x 10(5) M(-1) s(-1) at 298 K and k(4H)/k(4D) = 1.5 +/- 0.2. Despite the small KIE, tunneling is suggested by the ratio of Arrhenius pre-exponential factors, log(A(4H)/A(4D)) = -0.5 +/- 0.3. These data provide a test of the applicability of the Marcus cross relation for H and D transfers, over a range of temperatures, for a reaction that involves substantial tunneling. The cross relation calculates rate constants for Ru(II)imH(D) + TEMPO(*) that are greater than those observed: k(3H,calc)/k(3H) = 31 +/- 4 and k(3D,calc)/k(3D) = 140 +/- 20 at 298 K. In these rate constants and in the activation parameters, there is a better agreement with the Marcus cross relation for H than for D transfer, despite the greater prevalence of tunneling for H. The cross relation does not explicitly include tunneling, so close agreement should not be expected. In light of these results, the strengths and weaknesses of applying the cross relation to HAT reactions are discussed.
Collapse
Affiliation(s)
- Adam Wu
- Department of Chemistry, University of Washington, Campus Box 351700, Seattle, WA, 98195-1700, USA
| | - James M. Mayer
- Department of Chemistry, University of Washington, Campus Box 351700, Seattle, WA, 98195-1700, USA
| |
Collapse
|
10
|
Warren JJ, Mayer JM. Surprisingly long-lived ascorbyl radicals in acetonitrile: concerted proton-electron transfer reactions and thermochemistry. J Am Chem Soc 2008; 130:7546-7. [PMID: 18505256 PMCID: PMC2556879 DOI: 10.1021/ja802055t] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proton-coupled electron transfer (PCET) reactions and thermochemistry of 5,6-isopropylidene ascorbate (iAscH-) have been examined in acetonitrile solvent. iAscH- is oxidized by 2,4,6-tBu3C6H2O. and by excess TEMPO. to give the corresponding 5,6-isopropylidene ascorbyl radical anion (iAsc.-), which persists for hours at 298 K in dry MeCN solution. The stability of iAsc.- is surprising in light of the transience of the ascorbyl radical in aqueous solutions and is due to the lack of the protons needed for radical disproportionation. A concerted proton-electron transfer (CPET) mechanism is indicated for the reactions of iAscH-. Redox potential, pKa and equilibrium measurements define the thermochemical landscape for 5,6-isopropylidene ascorbic acid and its derivatives in MeCN. These measurements give an O-H bond dissociation free energy (BDFE) for iAscH- of 65.4 +/- 1.5 kcal mol-1 in MeCN. Similar studies on underivatized ascorbate indicate a BDFE of 67.8 +/- 1.2 kcal mol-1. These values are much lower than the aqueous BDFE for ascorbate of 74.0 +/- 1.5 kcal mol-1 derived from reported data.
Collapse
Affiliation(s)
- Jeffrey J. Warren
- University of Washington, Department of Chemistry, Box 351700, Seattle, Washington 98195
| | - James M. Mayer
- University of Washington, Department of Chemistry, Box 351700, Seattle, Washington 98195
| |
Collapse
|