1
|
Featherston AL, Kwon Y, Pompeo MM, Engl OD, Leahy DK, Miller SJ. Catalytic asymmetric and stereodivergent oligonucleotide synthesis. Science 2021; 371:702-707. [PMID: 33574208 DOI: 10.1126/science.abf4359] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/13/2021] [Indexed: 12/14/2022]
Abstract
We report the catalytic stereocontrolled synthesis of dinucleotides. We have demonstrated, for the first time to our knowledge, that chiral phosphoric acid (CPA) catalysts control the formation of stereogenic phosphorous centers during phosphoramidite transfer. Unprecedented levels of diastereodivergence have also been demonstrated, enabling access to either phosphite diastereomer. Two different CPA scaffolds have proven to be essential for achieving stereodivergence: peptide-embedded phosphothreonine-derived CPAs, which reinforce and amplify the inherent substrate preference, and C2-symmetric BINOL-derived CPAs, which completely overturn this stereochemical preference. The presently reported catalytic method does not require stoichiometric activators or chiral auxiliaries and enables asymmetric catalysis with readily available phosphoramidites. The method was applied to the stereocontrolled synthesis of diastereomeric dinucleotides as well as cyclic dinucleotides, which are of broad interest in immuno-oncology as agonists of the stimulator of interferon genes (STING) pathway.
Collapse
Affiliation(s)
| | - Yongseok Kwon
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Matthew M Pompeo
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Oliver D Engl
- Process Chemistry Development, Takeda Pharmaceuticals International Co., Cambridge, MA 02139, USA
| | - David K Leahy
- Process Chemistry Development, Takeda Pharmaceuticals International Co., Cambridge, MA 02139, USA.
| | - Scott J Miller
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
2
|
Tsubaki K, Shimooka H, Kitamura M, Okauchi T. Selective Transesterification of 2,2,2-Trifluoroethyl Phosphates: Synthesis of Mixed Unsymmetrical Phosphates. Org Lett 2019; 21:9779-9783. [PMID: 31765170 DOI: 10.1021/acs.orglett.9b04003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A selective transesterification starting with tris(2,2,2-trifluoroethyl) phosphate has been developed. This method involves a three-step substitution for 2,2,2-trifluoroethoxy groups and enables the facile synthesis of mixed unsymmetric phosphate triesters from three different alcohols. The substitution of the trifluoroethoxy group at the phosphorus proceeds selectively in the presence of DBU or lithium alkoxides. This method can be applied for the preparation of phospholipids.
Collapse
Affiliation(s)
- Kouta Tsubaki
- Department of Applied Chemistry, Graduate School of Engineering , Kyushu Institute of Technology , 1-1 Sensui-cho , Tobata , Kitakyushu 804-8550 , Japan
| | - Hirokazu Shimooka
- Department of Applied Chemistry, Graduate School of Engineering , Kyushu Institute of Technology , 1-1 Sensui-cho , Tobata , Kitakyushu 804-8550 , Japan
| | - Mitsuru Kitamura
- Department of Applied Chemistry, Graduate School of Engineering , Kyushu Institute of Technology , 1-1 Sensui-cho , Tobata , Kitakyushu 804-8550 , Japan
| | - Tatsuo Okauchi
- Department of Applied Chemistry, Graduate School of Engineering , Kyushu Institute of Technology , 1-1 Sensui-cho , Tobata , Kitakyushu 804-8550 , Japan
| |
Collapse
|
3
|
Dohle W, Su X, Mills SJ, Rossi A, Taylor CW, Potter BVL. A synthetic cyclitol-nucleoside conjugate polyphosphate is a highly potent second messenger mimic. Chem Sci 2019; 10:5382-5390. [PMID: 31171961 PMCID: PMC6540904 DOI: 10.1039/c9sc00445a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Reactions that form sec-sec ethers are well known, but few lead to compounds with dense functionality around the O-linkage. Replacement of the α-glucopyranosyl unit of adenophostin A, a potent d-myo-inositol 1,4,5-trisphosphate (IP3R) agonist, with a d-chiro-inositol surrogate acting substantially as a pseudosugar, leads to "d-chiro-inositol adenophostin". At its core, this cyclitol-nucleoside trisphosphate comprises a nucleoside sugar linked via an axial d-chiro-inositol 1-hydroxyl-adenosine 3'-ribose ether linkage. A divergent synthesis of d-chiro-inositol adenophostin has been achieved. Key features of the synthetic strategy to produce a triol for phosphorylation include a new selective mono-tosylation of racemic 1,2:4,5-di-O-isopropylidene-myo-inositol using tosyl imidazole; subsequent conversion of the product into separable camphanate ester derivatives, one leading to a chiral myo-inositol triflate used as a synthetic building block and the other to l-5-O-methyl-myo-inositol [l-(+)-bornesitol] to assign the absolute configuration; the nucleophilic coupling of an alkoxide of a ribose pent-4-ene orthoester unit with a structurally rigid chiral myo-inositol triflate derivative, representing the first sec-sec ether formation between a cyclitol and ribose. Reaction of the coupled product with a silylated nucleobase completes the assembly of the core structure. Further protecting group manipulation, mixed O- and N-phosphorylation, and subsequent removal of all protecting groups in a single step achieves the final product, avoiding a separate N6 protection/deprotection strategy. d-chiro-Inositol adenophostin evoked Ca2+ release through IP3Rs at lower concentrations than adenophostin A, hitherto the most potent known agonist of IP3Rs.
Collapse
Affiliation(s)
- Wolfgang Dohle
- Medicinal Chemistry & Drug Discovery
, Department of Pharmacology
, University of Oxford
,
Mansfield Road
, Oxford
, OX1 3QT
, UK
.
; Tel: +44-1865-271945
| | - Xiangdong Su
- Medicinal Chemistry & Drug Discovery
, Department of Pharmacology
, University of Oxford
,
Mansfield Road
, Oxford
, OX1 3QT
, UK
.
; Tel: +44-1865-271945
| | - Stephen J. Mills
- Medicinal Chemistry & Drug Discovery
, Department of Pharmacology
, University of Oxford
,
Mansfield Road
, Oxford
, OX1 3QT
, UK
.
; Tel: +44-1865-271945
| | - Ana M. Rossi
- Department of Pharmacology
, University of Cambridge
,
Tennis Court Road
, Cambridge
, CB2 1PD
, UK
| | - Colin W. Taylor
- Department of Pharmacology
, University of Cambridge
,
Tennis Court Road
, Cambridge
, CB2 1PD
, UK
| | - Barry V. L. Potter
- Medicinal Chemistry & Drug Discovery
, Department of Pharmacology
, University of Oxford
,
Mansfield Road
, Oxford
, OX1 3QT
, UK
.
; Tel: +44-1865-271945
| |
Collapse
|
4
|
Durantie E, Leroux JC, Castagner B. New paradigms for the chiral synthesis of inositol phosphates. Chembiochem 2015; 16:1030-2. [PMID: 25766971 DOI: 10.1002/cbic.201500071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Indexed: 12/12/2022]
Abstract
Paradigms found: Inositol phosphates are biomolecules found ubiquitously in eukaryotes, in which they play a number of vital biological roles. Their enantioselective synthesis has recently received a boost from two complementary phosphorylation methods that could change the way they are synthesised, and hopefully provide invaluable chemical biology tools to further our understanding of this large family.
Collapse
Affiliation(s)
- Estelle Durantie
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich (Switzerland)
| | | | | |
Collapse
|
5
|
Coppola KA, Testa JW, Allen EE, Sculimbrene BR. Selective phosphorylation of diols with a Lewis acid catalyst. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.05.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Meher G, Efthymiou T, Stoop M, Krishnamurthy R. Microwave-assisted preparation of nucleoside-phosphoramidites. Chem Commun (Camb) 2014; 50:7463-5. [DOI: 10.1039/c4cc03092c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Microwave-assisted phosphitylation of nucleosides is an efficient method for the preparation of phosphoramidites.
Collapse
Affiliation(s)
- G. Meher
- Department of Chemistry
- The Scripps Research Institute
- La Jolla, USA
| | - T. Efthymiou
- Department of Chemistry
- The Scripps Research Institute
- La Jolla, USA
| | - M. Stoop
- Department of Chemistry
- The Scripps Research Institute
- La Jolla, USA
| | - R. Krishnamurthy
- Department of Chemistry
- The Scripps Research Institute
- La Jolla, USA
| |
Collapse
|
7
|
Murray JI, Spivey AC, Woscholski R. Alternative synthetic tools to phospho-specific antibodies for phosphoproteome analysis: progress and prospects. J Chem Biol 2013; 6:175-84. [PMID: 24432133 DOI: 10.1007/s12154-013-0100-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/18/2013] [Indexed: 12/17/2022] Open
Abstract
Signal transduction cascades in living systems are often controlled via post-translational phosphorylation and dephosphorylation of proteins. These processes are catalyzed in vivo by kinase and phosphatase enzymes, which consequently play an important role in many disease states, including cancer and immune system disorders. Current techniques for studying the phosphoproteome (isotopic labeling, chromatographic techniques, and phosphospecific antibodies), although undoubtedly very powerful, have yet to provide a generic tool for phosphoproteomic analysis despite the widespread utility such a technique would have. The use of small molecule organic catalysts that can promote selective phosphate esterification could provide a useful alternative to current state-of-the-art techniques for use in, e.g., the labeling and pull-down of phosphorylated proteins. This report reviews current techniques used for phosphoproteomic analysis and the recent use of small molecule peptide-based catalysts in phosphorylation reactions, indicating possible future applications for this type of catalyst as synthetic alternatives to phosphospecific antibodies for phosphoproteome analysis.
Collapse
Affiliation(s)
- James I Murray
- Department of Chemistry, Imperial College London, London, SW7 2AZ UK
| | - Alan C Spivey
- Department of Chemistry, Imperial College London, London, SW7 2AZ UK
| | | |
Collapse
|
8
|
Crossey K, Hardacre C, Migaud ME. Nucleoside phosphitylation using ionic liquid stabilised phosphorodiamidites and mechanochemistry. Chem Commun (Camb) 2013; 48:11969-71. [PMID: 23128063 DOI: 10.1039/c2cc36367d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A range of nucleoside phosphoramidites incorporating small amino substituents have been readily synthesised using ionic liquid stabilised phosphorodiamidites coupled with mechanochemistry.
Collapse
Affiliation(s)
- Kerri Crossey
- QUILL/School of Chemistry and Chemical Engineering, Queen's University, Belfast, UK
| | | | | |
Collapse
|
9
|
Liu Y, Cao XF, Liu X, Cao YB, Chu WJ, Yang YS. Synthesis, pharmacokinetics and in vivo antifungal activity of the novel water-soluble prodrugs of itraconazole analogue YL-24. CHINESE CHEM LETT 2013. [DOI: 10.1016/j.cclet.2013.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
|
11
|
Jordan PA, Miller SJ. An approach to the site-selective deoxygenation of hydroxy groups based on catalytic phosphoramidite transfer. Angew Chem Int Ed Engl 2012; 51:2907-11. [PMID: 22319027 PMCID: PMC3319666 DOI: 10.1002/anie.201109033] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Indexed: 12/24/2022]
Affiliation(s)
- Peter A. Jordan
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107, Fax: (+1) 203-496-4900
| | - Scott J. Miller
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107, Fax: (+1) 203-496-4900
| |
Collapse
|
12
|
Jordan PA, Miller SJ. An Approach to the Site-Selective Deoxygenation of Hydroxy Groups Based on Catalytic Phosphoramidite Transfer. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201109033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Asymmetric phosphorylation through catalytic P(III) phosphoramidite transfer: enantioselective synthesis of D-myo-inositol-6-phosphate. Proc Natl Acad Sci U S A 2010; 107:20620-4. [PMID: 20439750 DOI: 10.1073/pnas.1001111107] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite the ubiquitous use of phosphoramidite chemistry in the synthesis of biophosphates, catalytic asymmetric phosphoramidite transfer remains largely unexplored for phosphate ester synthesis. We have discovered that a tetrazole-functionalized peptide, in the presence of 10-Å molecular sieves, functions as an enantioselective catalyst for phosphite transfer. This chemistry in turn has been used as the key step in a streamlined synthesis of myo-inositol-6-phosphate. Mechanistic insights implicate phosphate as a directing group for a highly selective kinetic resolution of a protected inositol monophosphate. This work represents a distinct and efficient method for the selective catalytic phosphorylation of natural products.
Collapse
|
14
|
Pd-Catalyzed Reactions of Allenylphosphonates and Related Allenes with Functionalized 2-Iodophenols, 2-Iodobenzoic Acid, and 2-Iodobenzyl Alcohol Leading to Functionalized Benzofurans, Isocoumarins, and Benzopyrans. European J Org Chem 2009. [DOI: 10.1002/ejoc.200900865] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|