2
|
Soueidan OM, Scully TW, Kaur J, Panigrahi R, Belovodskiy A, Do V, Matier CD, Lemieux MJ, Wuest F, Cheeseman C, West FG. Fluorescent Hexose Conjugates Establish Stringent Stereochemical Requirement by GLUT5 for Recognition and Transport of Monosaccharides. ACS Chem Biol 2017; 12:1087-1094. [PMID: 28205432 DOI: 10.1021/acschembio.6b01101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The specificity characteristics of transporters can be exploited for the development of novel diagnostic therapeutic probes. The facilitated hexose transporter family (GLUTs) has a distinct set of preferences for monosaccharide substrates, and while some are expressed ubiquitously (e.g., GLUT1), others are quite tissue specific (e.g., GLUT5, which is overexpressed in some breast cancer tissues). While these differences have enabled the development of new molecular probes based upon hexose- and tissue-selective uptake, substrate design for compounds targeting these GLUT transporters has been encumbered by a limited understanding of the molecular interactions at play in hexose binding and transport. Four new fluorescently labeled hexose derivatives have been prepared, and their transport characteristics were examined in two breast cancer cell lines expressing mainly GLUTs 1, 2, and 5. Our results demonstrate, for the first time, a stringent stereochemical requirement for recognition and transport by GLUT5. 6-NBDF, in which all substituents are in the d-fructose configuration, is taken up rapidly into both cell lines via GLUT5. On the other hand, inversion of a single stereocenter at C-3 (6-NBDP), C-4 (6-NBDT), or C-5 (6-NDBS) results in selective transport via GLUT1. An in silico docking study employing the recently published GLUT5 crystal structure confirms this stereochemical dependence. This work provides insight into hexose-GLUT interactions at the molecular level and will facilitate structure-based design of novel substrates targeting individual members of the GLUT family and forms the basis of new cancer imaging or therapeutic agents.
Collapse
Affiliation(s)
- Olivier-Mohamad Soueidan
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2
- Department
of Physiology, University of Alberta, 7-55 Medical Sciences Building, Edmonton, Alberta, Canada T6G 2H7
| | - Thomas W. Scully
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2
| | - Jatinder Kaur
- Department
of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada T6G 1Z2
| | - Rashmi Panigrahi
- Department
of Biochemistry, University of Alberta, 451 Medical Sciences Building, Edmonton, Alberta, Canada T6G 2H7
| | - Alexandr Belovodskiy
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2
| | - Victor Do
- Department
of Physiology, University of Alberta, 7-55 Medical Sciences Building, Edmonton, Alberta, Canada T6G 2H7
| | - Carson D. Matier
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2
| | - M. Joanne Lemieux
- Department
of Biochemistry, University of Alberta, 451 Medical Sciences Building, Edmonton, Alberta, Canada T6G 2H7
| | - Frank Wuest
- Department
of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada T6G 1Z2
| | - Chris Cheeseman
- Department
of Physiology, University of Alberta, 7-55 Medical Sciences Building, Edmonton, Alberta, Canada T6G 2H7
| | - F. G. West
- Department
of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|
3
|
Bhaumik A, Das A, Pathak T. Vinyl Selenones Derived fromd-Fructose: A New Platform for Fructochemistry. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Atanu Bhaumik
- Department of Chemistry; Indian Institute of Technology Kharagpur; Kharagpur 721302 India
| | - Ashrukana Das
- Department of Chemistry; Indian Institute of Technology Kharagpur; Kharagpur 721302 India
| | - Tanmaya Pathak
- Department of Chemistry; Indian Institute of Technology Kharagpur; Kharagpur 721302 India
| |
Collapse
|