1
|
Ibrahim S, Khan MU, Khurram I, Ghani MU, Sharifi-Rad J, Calina D. Anticancer efficacy of Spiruchostatin A: current insights into histone deacetylase inhibition and oncologic applications. Eur J Med Res 2025; 30:169. [PMID: 40082963 PMCID: PMC11907871 DOI: 10.1186/s40001-025-02401-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 02/21/2025] [Indexed: 03/16/2025] Open
Abstract
Spiruchostatin A also referred to as YM753 and OBP801, a cyclic peptide-based natural product derived from Pseudomonas sp., is distinguished by its potent inhibition of Class I histone deacetylases (HDACs). The modulation of epigenetic mechanisms by HDAC inhibitors is fundamental for altering gene expression related to cell growth, apoptosis, and differentiation, highlighting their potential in oncologic therapies. This updated review assesses the antitumor efficacy of Spiruchostatin A across diverse cellular and animal models, scrutinizing its viability as a therapeutic agent against various cancers. A systematic literature review was executed by searching databases such as PubMed/MedLine, Scopus, and Web of Science from October 2022 to February 2023. The inclusion criteria focused on studies involving Spiruchostatin A in the context of cancer treatment, including in vitro and in vivo models. The review concentrated on the compound's mechanistic action, biological activity, and clinical applicability. Spiruchostatin A has demonstrated significant antitumor activities, including inducing apoptosis and inhibiting tumor growth effectively in multiple models. Its therapeutic potential is particularly noted in synergistic applications with other anticancer agents, enhancing its efficacy. Mechanistically, the compound facilitates chromatin relaxation and transcriptional activation of key tumor suppressor genes through increased histone acetylation. Spiruchostatin A exhibits substantial potential as an anticancer agent through effective HDAC inhibition and subsequent epigenetic modifications of cancer cell biology. However, comprehensive clinical trials are imperative to validate its efficacy and safety profiles comprehensively. Future research is warranted to elucidate detailed molecular mechanisms and to develop biomarkers for predicting treatment response. Comprehensive longitudinal clinical studies are also critical to establish Spiruchostatin A's role within the broader oncological therapeutic regimen, along with the exploration of its analogs for improved therapeutic outcomes.
Collapse
Affiliation(s)
- Saooda Ibrahim
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Umer Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| | - Iqra Khurram
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Usman Ghani
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador.
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
2
|
Narita K. [Synthetic Study on Bicyclic Depsipeptides Containing an Intramolecular Disulfide Bond]. YAKUGAKU ZASSHI 2022; 142:917-926. [PMID: 36047217 DOI: 10.1248/yakushi.22-00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bicyclic depsipeptide natural products containing an intramolecular disulfide bond are potent histone deacetylase (HDAC) inhibitors. Among them, FK228 (romidepsin) is approved for treating cutaneous T-cell lymphoma and peripheral T-cell lymphoma. This study focused on developing a new synthesis method for producing this class of natural products for use as HDAC inhibitors with high efficacy and low toxicity. In this paper, the total syntheses of FK228 as well as spiruchostatins A and B are described. The synthesis routes include a convergent way to assemble seco-acids via the amide condensation of amine segments with carboxylic acid segments. The syntheses of C4- and C7-modified FK228 analogs (FK-A1 to FK-A8) are also described. The evaluation of HDAC and cell growth inhibitory activities of the synthesized analogs revealed novel aspects of their structure-activity relationship. Potent and highly isoform-selective HDAC1 inhibitors were identified. Furthermore, the analogs showed phosphatidylinositol 3-kinase (PI3K) inhibitory activity. Structural optimization of the analogs as HDAC/PI3K dual inhibitors led to the identification of FK-A11 as the most potent analog.
Collapse
Affiliation(s)
- Koichi Narita
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| |
Collapse
|
3
|
Yan H, Chen F. Recent Progress in Solid‐Phase Total Synthesis of Naturally Occurring Small Peptides. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Hong Yan
- Institute of Pharmaceutical Science and Technology College of Chemistry Fuzhou University Fuzhou 350108 People's Republic of China
| | - Fen‐Er Chen
- Institute of Pharmaceutical Science and Technology College of Chemistry Fuzhou University Fuzhou 350108 People's Republic of China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University 220 Handan Road Shanghai 200433 People's Republic of China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs Fudan University 220 Handan Road Shanghai 200433 People's Republic of China
| |
Collapse
|
4
|
Sundaravelu N, Sangeetha S, Sekar G. Metal-catalyzed C-S bond formation using sulfur surrogates. Org Biomol Chem 2021; 19:1459-1482. [PMID: 33528480 DOI: 10.1039/d0ob02320e] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Sulfur-containing compounds are present in a wide range of biologically important natural products, drugs, catalysts, and ligands and they have wide applications in material chemistry. Transition metal-catalyzed C-S bond-forming reactions have successfully overcome the obstacles associated with traditional organosulfur compound syntheses such as stoichiometric use of metal-catalysts, catalyst-poisoning and harsh reaction conditions. One of the key demands in metal-catalyzed C-S bond-forming reactions is the use of an appropriate sulfur source due to its odor and availability. The unpleasant odor of many organic sulfur sources might be one of the reasons for the metal-catalyzed C-S bond-forming reactions being less explored compared to other metal-catalyzed C-heteroatom bond-forming reactions. Hence, employing an appropriate sulfur surrogate in the synthesis of organosulfur compounds in metal-catalyzed reactions is still of prime interest for chemists. This review explores the recent advances in C-S bond formation using transition metal-catalyzed cross-coupling reactions and C-H bond functionalization using diverse and commercially available sulfur surrogates. Based on the different transition metal-catalysts, this review has been divided into three major classes namely (1) palladium-catalyzed C-S bond formation, (2) copper-catalyzed C-S bond formation, and (3) other metal-catalyzed C-S bond formation. This review is further arranged based on the different sulfur surrogates. Also, this review provides an insight into the growing opportunities in the construction of complex organosulfur scaffolds covering natural product synthesis and functional materials.
Collapse
Affiliation(s)
- Nallappan Sundaravelu
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Subramani Sangeetha
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Govindasamy Sekar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| |
Collapse
|
5
|
Zang X, Peraro L, Davison RT, Blum TR, Vallabhaneni D, Fennell CE, Cramer SL, Shah HK, Wholly DM, Fink EA, Sivak JT, Ingalls KM, Herr CT, Lawson VE, Burnett MR, Slade DJ, Cole KE, Carle SA, Miller JS. Synthesis and Biological Evaluation of a Depsipeptidic Histone Deacetylase Inhibitor via a Generalizable Approach Using an Optimized Latent Thioester Solid-Phase Linker. J Org Chem 2020; 85:8253-8260. [DOI: 10.1021/acs.joc.0c00854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiaoyu Zang
- Department of Chemistry, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| | - Leila Peraro
- Department of Chemistry, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| | - Ryan T. Davison
- Department of Chemistry, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| | - Travis R. Blum
- Department of Chemistry, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| | - Deepak Vallabhaneni
- Department of Biology, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| | - Caitlyn E. Fennell
- Department of Biology, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| | - Stephanie L. Cramer
- Department of Chemistry, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| | - Heli K. Shah
- Department of Chemistry, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| | - Deirdre M. Wholly
- Department of Chemistry, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| | - Elissa A. Fink
- Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, Virginia 23606, United States
| | - Jacob T. Sivak
- Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, Virginia 23606, United States
| | - Kathryn M. Ingalls
- Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, Virginia 23606, United States
| | - Chelsea T. Herr
- Department of Chemistry, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| | - Vernon E. Lawson
- Department of Chemistry, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| | - Matthew R. Burnett
- Department of Biology, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| | - David J. Slade
- Department of Chemistry, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| | - Kathryn E. Cole
- Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, Virginia 23606, United States
| | - Sigrid A. Carle
- Department of Biology, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| | - Justin S. Miller
- Department of Chemistry, Hobart and William Smith Colleges, Geneva, New York 14456, United States
| |
Collapse
|
6
|
Lecointre B, Narozny R, Borrello MT, Senger J, Chakrabarti A, Jung M, Marek M, Romier C, Melesina J, Sippl W, Bischoff L, Ganesan A. Isoform-selective HDAC1/6/8 inhibitors with an imidazo-ketopiperazine cap containing stereochemical diversity. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0364. [PMID: 29685969 DOI: 10.1098/rstb.2017.0364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2018] [Indexed: 11/12/2022] Open
Abstract
A series of hydroxamic acids linked by different lengths to a chiral imidazo-ketopiperazine scaffold were synthesized. The compounds with linker lengths of 6 and 7 carbon atoms were the most potent in histone deacetylase (HDAC) inhibition, and were specific submicromolar inhibitors of the HDAC1, HDAC6 and HDAC8 isoforms. A docking model for the binding mode predicts binding of the hydroxamic acid to the active site zinc cation and additional interactions between the imidazo-ketopiperazine and the enzyme rim. The compounds were micromolar inhibitors of the MV4-11, THP-1 and U937 cancer cell lines. Increased levels of histone H3 and tubulin acetylation support a cellular mechanism of action through HDAC inhibition.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'.
Collapse
Affiliation(s)
- Bertrand Lecointre
- Normandie University, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Remy Narozny
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK
| | - Maria Teresa Borrello
- INSERM U1068 Cellular Stress Group, Cancer Research Center of Marseille, Parc scientifique de Luminy, 163 avenue de Luminy, 13288 Marseille Cedex 9, France
| | - Johanna Senger
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, Freiburg 79104, Germany
| | - Alokta Chakrabarti
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, Freiburg 79104, Germany
| | - Manfred Jung
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, Freiburg 79104, Germany
| | - Martin Marek
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS, INSERM, 1 rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Christophe Romier
- Département de Biologie Structurale Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS, INSERM, 1 rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Jelena Melesina
- Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Laurent Bischoff
- Normandie University, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - A Ganesan
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
7
|
Yoshida M. Solid-Phase Total Synthesis of Biologically Active Cyclodepsipeptide Spiruchostatin A. J SYN ORG CHEM JPN 2018. [DOI: 10.5059/yukigoseikyokaishi.76.522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Maolanon AR, Kristensen HME, Leman LJ, Ghadiri MR, Olsen CA. Natural and Synthetic Macrocyclic Inhibitors of the Histone Deacetylase Enzymes. Chembiochem 2016; 18:5-49. [DOI: 10.1002/cbic.201600519] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Alex R. Maolanon
- Center for Biopharmaceuticals and; Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Helle M. E. Kristensen
- Center for Biopharmaceuticals and; Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Luke J. Leman
- Department of Chemistry; The Skaggs Institute for Chemical Biology; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - M. Reza Ghadiri
- Department of Chemistry; The Skaggs Institute for Chemical Biology; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Christian A. Olsen
- Center for Biopharmaceuticals and; Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| |
Collapse
|
9
|
Yoshida M, Sasahara KI, Doi T. Total synthesis of cyclodepsipeptide spiruchostatin A on silyl-linked polymer-support. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.07.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
10
|
Fuse S, Koinuma H, Kimbara A, Izumikawa M, Mifune Y, He H, Shin-ya K, Takahashi T, Doi T. Total Synthesis and Stereochemistry Revision of Mannopeptimycin Aglycone. J Am Chem Soc 2014; 136:12011-7. [DOI: 10.1021/ja505105t] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shinichiro Fuse
- Department
of Applied Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| | - Hirotsugu Koinuma
- Department
of Applied Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| | - Atsushi Kimbara
- Department
of Applied Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| | - Miho Izumikawa
- Japan Biological Informatics Consortium (JBIC), Koto-ku, Tokyo 135-0064, Japan
| | - Yuto Mifune
- Department
of Applied Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| | - Haiyin He
- Natural
Products Laboratory, Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Kazuo Shin-ya
- National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo 135-0064, Japan
| | | | - Takayuki Doi
- Graduate
School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
11
|
Total synthesis of burkholdacs A and B and 5,6,20-tri-epi-burkholdac A: HDAC inhibition and antiproliferative activity. Eur J Med Chem 2014; 76:301-13. [DOI: 10.1016/j.ejmech.2014.02.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/12/2014] [Accepted: 02/16/2014] [Indexed: 01/12/2023]
|
12
|
Shiina I. An Adventurous Synthetic Journey with MNBA from Its Reaction Chemistry to the Total Synthesis of Natural Products. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2014. [DOI: 10.1246/bcsj.20130216] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Isamu Shiina
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science
| |
Collapse
|
13
|
Narita K, Fukui Y, Sano Y, Yamori T, Ito A, Yoshida M, Katoh T. Total synthesis of bicyclic depsipeptides spiruchostatins C and D and investigation of their histone deacetylase inhibitory and antiproliferative activities. Eur J Med Chem 2013; 60:295-304. [DOI: 10.1016/j.ejmech.2012.12.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 12/08/2012] [Accepted: 12/11/2012] [Indexed: 01/07/2023]
|
14
|
Benelkebir H, Donlevy AM, Packham G, Ganesan A. Total synthesis and stereochemical assignment of burkholdac B, a depsipeptide HDAC inhibitor. Org Lett 2011; 13:6334-7. [PMID: 22091906 DOI: 10.1021/ol202197q] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Three diastereomers of burkholdac B were prepared by total synthesis, enabling the full stereochemical assignment of the natural product. It is proposed that burkholdac B is identical to thailandepsin A independently isolated by Cheng from the same strain of Burkholderia thailandensis . Burkholdac B is the most potent among depsipeptide histone deacetylase inhibitors in growth inhibition of the MCF7 breast cancer cell line with an IC(50) of 60 pM.
Collapse
Affiliation(s)
- Hanae Benelkebir
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | | | | | | |
Collapse
|
15
|
Total synthesis of largazole and analogues: HDAC inhibition, antiproliferative activity and metabolic stability. Bioorg Med Chem 2011; 19:3650-8. [DOI: 10.1016/j.bmc.2011.02.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 02/08/2011] [Accepted: 02/13/2011] [Indexed: 11/24/2022]
|
16
|
Fuse S, Okada K, Iijima Y, Munakata A, Machida K, Takahashi T, Takagi M, Shin-ya K, Doi T. Total synthesis of spiruchostatin B aided by an automated synthesizer. Org Biomol Chem 2011; 9:3825-33. [DOI: 10.1039/c0ob01169j] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
17
|
|
18
|
Narita K, Kikuchi T, Watanabe K, Takizawa T, Oguchi T, Kudo K, Matsuhara K, Abe H, Yamori T, Yoshida M, Katoh T. Total synthesis of the bicyclic depsipeptide HDAC inhibitors spiruchostatins A and B, 5''-epi-spiruchostatin B, FK228 (FR901228) and preliminary evaluation of their biological activity. Chemistry 2010; 15:11174-86. [PMID: 19760730 DOI: 10.1002/chem.200901552] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The bicyclic depsipeptide histone deacetylase (HDAC) inhibitors spiruchostatins A and B, 5''-epi-spiruchostatin B and FK228 were efficiently synthesized in a convergent and unified manner. The synthetic method involved the following crucial steps: i) a Julia-Kocienski olefination of a 1,3-propanediol-derived sulfone and a L- or D-malic acid-derived aldehyde to access the most synthetically challenging unit, (3S or 3R,4E)-3-hydroxy-7-mercaptohept-4-enoic acid, present in a D-alanine- or D-valine-containing segment; ii) a condensation of a D-valine-D-cysteine- or D-allo-isoleucine-D-cysteine-containing segment with a D-alanine- or D-valine-containing segment to directly assemble the corresponding seco-acids; and iii) a macrocyclization of a seco-acid using the Shiina method or the Mitsunobu method to construct the requisite 15- or 16-membered macrolactone. The present synthesis has established the C5'' stereochemistry of spiruchostatin B. In addition, HDAC inhibitory assay and the cell-growth inhibition analysis of the synthesized depsipeptides determined the order of their potency and revealed some novel aspects of structure-activity relationships. It was also found that unnatural 5''-epi-spiruchostatin B shows extremely high selectivity (ca. 1600-fold) for class I HDAC1 (IC(50)=2.4 nM) over class II HDAC6 (IC(50)=3900 nM) with potent cell-growth-inhibitory activity at nanomolar levels of IC(50) values.
Collapse
Affiliation(s)
- Koichi Narita
- Laboratory of Synthetic Medicinal Chemistry, Department of Chemical Pharmaceutical Science, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Li W, Schlecker A, Ma D. Total synthesis of antimicrobial and antitumor cyclic depsipeptides. Chem Commun (Camb) 2010; 46:5403-20. [DOI: 10.1039/c0cc00629g] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|