1
|
Chi ST, Wei PC, Chiu YJ, Lin TH, Lin CH, Chen CM, Yao CF, Lin W, Lee-Chen GJ, Chang KH. Indole and Coumarin Derivatives Targeting EEF2K in Aβ Folding Reporter Cells. J Neurochem 2025; 169:e16300. [PMID: 39754378 DOI: 10.1111/jnc.16300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/25/2024] [Accepted: 12/12/2024] [Indexed: 01/06/2025]
Abstract
Misfolding and accumulation of amyloid-β (Aβ) in the brains of patients with Alzheimer's disease (AD) lead to neuronal loss through various mechanisms, including the downregulation of eukaryotic elongation factor 2 (EEF2) protein synthesis signaling. This study investigated the neuroprotective effects of indole and coumarin derivatives on Aβ folding and EEF2 signaling using SH-SY5Y cells expressing Aβ-green fluorescent protein (GFP) folding reporter. Among the tested compounds, two indole (NC009-1, -6) and two coumarin (LM-021, -036) derivatives effectively reduced Aβ misfolding and associated reactive oxygen species (ROS) production. Additionally, these compounds decreased acetylcholinesterase and caspase-3/-6 activities while promoting neurite outgrowth. NC009-1 increased active phosphorylation of extracellular-signal regulated kinase (ERK) (T202/Y204), leading to an increase in inactive eukaryotic elongation factor 2 kinase (EEF2K) phosphorylation (S366). LM-021 decreased the active phosphorylation of AMP-activated protein kinase (AMPK) (T172) and EEF2K (S398), while LM-036 exhibited dual effects, increasing inactive phosphorylation and decreasing active phosphorylation of EEF2K. These changes in EEF2K phosphorylation led to decreased EEF2K activity and a subsequent reduction in inactive phosphorylation of EEF2 (T56). This cascade further promoted the phosphorylation of transcription factor cAMP-response-element binding protein (CREB) (S133) and the expression of brain-derived neurotrophic factor (BDNF), and reduced BCL-2 associated X-protein (BAX)/B-cell lymphoma 2 (BCL2) ratio. Knockdown of EEF2 abolished the effects of NC009-1, LM-021, and LM-036 on CREB phosphorylation, BDNF expression, caspase-3 activity, and neurite outgrowth. These findings demonstrate that NC009-1, LM-021, and LM-036 exert their neuroprotective effects through modulation of EEF2K signaling, highlighting their potentials as therapeutic candidates for AD.
Collapse
Affiliation(s)
- Shun-Tzu Chi
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Pei-Cih Wei
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ya-Jen Chiu
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Te-Hsien Lin
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chih-Hsin Lin
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Guey-Jen Lee-Chen
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
2
|
Yang PN, Chen WL, Lee JW, Lin CH, Chen YR, Lin CY, Lin W, Yao CF, Wu YR, Chang KH, Chen CM, Lee-Chen GJ. Coumarin-chalcone hybrid LM-021 and indole derivative NC009-1 targeting inflammation and oxidative stress to protect BE(2)-M17 cells against α-synuclein toxicity. Aging (Albany NY) 2023; 15:8061-8089. [PMID: 37578928 PMCID: PMC10497001 DOI: 10.18632/aging.204954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/17/2023] [Indexed: 08/16/2023]
Abstract
Parkinson's disease (PD) is featured mainly by the loss of dopaminergic neurons and the presence of α-synuclein-containing aggregates in the substantia nigra of brain. The α-synuclein fibrils and aggregates lead to increased oxidative stress and neural toxicity in PD. Chronic inflammation mediated by microglia is one of the hallmarks of PD pathophysiology. In this report, we showed that coumarin-chalcone hybrid LM-021 and indole derivative NC009-1 reduced the expression of major histocompatibility complex-II, NLR family pyrin domain containing (NLRP) 3, caspase-1, inducible nitric oxide synthase, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in α-synuclein-activated mouse BV-2 microglia. Release of pro-inflammatory mediators including nitric oxide, IL-1β, IL-6 and TNF-α was also mitigated. In BE(2)-M17 cells expressing A53T α-synuclein aggregates, LM-021 and NC009-1 reduced α-synuclein aggregation, neuroinflammation, oxidative stress and apoptosis, and promoted neurite outgrowth. These protective effects were mediated by downregulating NLRP1, IL-1β and IL-6, and their downstream pathways including nuclear factor (NF)-κB inhibitor alpha (IκBα)/NF-κB P65 subunit (P65), c-Jun N-terminal kinase (JNK)/proto-oncogene c-Jun (JUN), mitogen-activated protein kinase 14 (P38)/signal transducer and activator of transcription (STAT) 1, and Janus kinase 2 (JAK2)/STAT3. The study results indicate LM-021 and NC009-1 as potential new drug candidates for PD.
Collapse
Affiliation(s)
- Pei-Ning Yang
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Wan-Ling Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Jun-Wei Lee
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Chih-Hsin Lin
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Yi-Ru Chen
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chung-Yin Lin
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
3
|
Investigating Therapeutic Effects of Indole Derivatives Targeting Inflammation and Oxidative Stress in Neurotoxin-Induced Cell and Mouse Models of Parkinson's Disease. Int J Mol Sci 2023; 24:ijms24032642. [PMID: 36768965 PMCID: PMC9917106 DOI: 10.3390/ijms24032642] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Neuroinflammation and oxidative stress have been emerging as important pathways contributing to Parkinson's disease (PD) pathogenesis. In PD brains, the activated microglia release inflammatory factors such as interleukin (IL)-β, IL-6, tumor necrosis factor (TNF)-α, and nitric oxide (NO), which increase oxidative stress and mediate neurodegeneration. Using 1-methyl-4-phenylpyridinium (MPP+)-activated human microglial HMC3 cells and the sub-chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD, we found the potential of indole derivative NC009-1 against neuroinflammation, oxidative stress, and neurodegeneration for PD. In vitro, NC009-1 alleviated MPP+-induced cytotoxicity, reduced NO, IL-1β, IL-6, and TNF-α production, and suppressed NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in MPP+-activated HMC3 cells. In vivo, NC009-1 ameliorated motor deficits and non-motor depression, increased dopamine and dopamine transporter levels in the striatum, and reduced oxidative stress as well as microglia and astrocyte reactivity in the ventral midbrain of MPTP-treated mice. These protective effects were achieved by down-regulating NLRP3, CASP1, iNOS, IL-1β, IL-6, and TNF-α, and up-regulating SOD2, NRF2, and NQO1. These results strengthen the involvement of neuroinflammation and oxidative stress in PD pathogenic mechanism, and indicate NC009-1 as a potential drug candidate for PD treatment.
Collapse
|
4
|
Chen YC, Chiu YJ, Lin CH, Hsu WC, Wu JL, Huang CH, Lin CW, Yao CF, Huang HJ, Lo YS, Chen CM, Wu YR, Chang KH, Lee-Chen GJ, Mei Hsieh-Li H. Indole Compound NC009-1 Augments APOE and TRKA in Alzheimer's Disease Cell and Mouse Models for Neuroprotection and Cognitive Improvement. J Alzheimers Dis 2020; 67:737-756. [PMID: 30689566 DOI: 10.3233/jad-180643] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD), associated with abnormal accumulation of amyloid-β (Aβ), is the most common cause of dementia among older people. A few studies have identified substantial AD biomarkers in blood but their results were inconsistent. Here we screened gene expression alterations on Aβ-GFP SH-SY5Y neuronal model for AD, and evaluated the findings on peripheral leukocytes from 78 patients with AD and 56 healthy controls. The therapeutic responses of identified biomarker candidates were further examined in Aβ-GFP SH-SY5Y neuronal and APP/PS1/Tau triple transgenic (3×Tg-AD) mouse models. Downregulation of apolipoprotein E (APOE) and tropomyosin receptor kinase A (TRKA) were detected in Aβ-GFP SH-SY5Y cells and validated by peripheral leukocytes from AD patients. Treatment with an in-house indole compound NC009-1 upregulated the expression of APOE and TRKA accompanied with improvement of neurite outgrowth in Aβ-GFP SH-SY5Y cells. NC009-1 further rescued the downregulated APOE and TRKA and reduced Aβ and tau levels in hippocampus and cortex, and ameliorated cognitive deficits in streptozocin-induced hyperglycemic 3×Tg-AD mice. These results suggest the role of APOE and TRKA as potential peripheral biomarkers in AD, and offer a new drug development target of AD treatment. Further studies of a large series of AD patients will be warranted to verify the findings and confirm the correlation between these markers and therapeutic efficacy.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ya-Jen Chiu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chih-Hsin Lin
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Wen-Chuin Hsu
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Dementia Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jia-Lu Wu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chen-Hsiang Huang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chia-Wei Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Hei-Jen Huang
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Yen-Shi Lo
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
5
|
The indole compound NC009-1 inhibits aggregation and promotes neurite outgrowth through enhancement of HSPB1 in SCA17 cells and ameliorates the behavioral deficits in SCA17 mice. Neurotoxicology 2018; 67:259-269. [PMID: 29936316 DOI: 10.1016/j.neuro.2018.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 12/18/2022]
Abstract
Spinocerebellar ataxia type 17 (SCA17) is caused by the expansion of translated CAG repeat in the TATA box binding protein (TBP) gene encoding a long polyglutamine (polyQ) tract in the TBP protein, which leads to intracellular accumulation of aggregated TBP and cell death. The molecular chaperones act in preventing protein aggregation to ameliorate downstream harmful events. In this study, we used Tet-On cells with inducible SCA17 TBP/Q79-GFP expression to test five in-house NC009 indole compounds for neuroprotection. We found that both aggregation and polyQ-induced reactive oxygen species can be significantly prohibited by the tested NC009 compounds in Tet-On TBP/Q79 293 cells. Among the five indole compounds, NC009-1 up-regulated expression of heat shock protein family B (small) member 1 (HSPB1) chaperone to reduce polyQ aggregation and promote neurite outgrowth in neuronal differentiated TBP/Q79 SH-SY5Y cells. The increased HSPB1 thus ameliorated the increased BH3 interacting domain death agonist (BID), cytochrome c (CYCS) release, and caspase 3 (CASP3) activation which result in apoptosis. Knock down of HSPB1 attenuated the effects of NC009-1 on TBP/Q79 SH-SY5Y cells, suggesting that HSPB1 might be one of the major pathways involved for NC009-1 effects. NC009-1 further reduced polyQ aggregation in Purkinje cells and ameliorated behavioral deficits in SCA17 TBP/Q109 transgenic mice. Our results suggest that NC009-1 has a neuroprotective effect on SCA17 cell and mouse models to support its therapeutic potential in SCA17 treatment.
Collapse
|
6
|
Cabrero-Antonino JR, Adam R, Junge K, Beller M. Cobalt-catalysed reductive C-H alkylation of indoles using carboxylic acids and molecular hydrogen. Chem Sci 2017; 8:6439-6450. [PMID: 29163930 PMCID: PMC5632795 DOI: 10.1039/c7sc02117h] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/11/2017] [Indexed: 12/29/2022] Open
Abstract
The direct CH-alkylation of indoles using carboxylic acids is presented for the first time. The catalytic system based on the combination of Co(acac)3 and 1,1,1-tris(diphenylphosphinomethyl)-ethane (Triphos, L1), in the presence of Al(OTf)3 as co-catalyst, is able to perform the reductive alkylation of 2-methyl-1H-indole with a wide range of carboxylic acids. The utility of the protocol was further demonstrated through the C3 alkylation of several substituted indole derivatives using acetic, phenylacetic or diphenylacetic acids. In addition, a careful selection of the reaction conditions allowed to perform the selective C3 alkenylation of some indole derivatives. Moreover, the alkenylation of C2 position of 3-methyl-1H-indole was also possible. Control experiments indicate that the aldehyde, in situ formed from the carboxylic acid hydrogenation, plays a central role in the overall process. This new protocol enables the direct functionalization of indoles with readily available and stable carboxylic acids using a non-precious metal based catalyst and hydrogen as reductant.
Collapse
Affiliation(s)
- Jose R Cabrero-Antonino
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock , Albert-Einstein-Straße 29a , 18059 Rostock , Germany .
| | - Rosa Adam
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock , Albert-Einstein-Straße 29a , 18059 Rostock , Germany .
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock , Albert-Einstein-Straße 29a , 18059 Rostock , Germany .
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock , Albert-Einstein-Straße 29a , 18059 Rostock , Germany .
| |
Collapse
|
7
|
Moon HR, Lee S, Kim SY, Kim JN. Regioselective Allylic Rearrangement of 3-Alkyl- N-allylindoles to 3-Alkyl-2-allylindoles. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hye Ran Moon
- Department of Chemistry and Institute of Basic Science; Chonnam National University; Gwangju 500-757 Korea
| | - Sangku Lee
- Targeted Medicine Research Center; Korea Research Institute of Bioscience and Biotechnology; Cheongwon Chungbuk 363-883 Korea
| | - Su Yeon Kim
- Department of Chemistry and Institute of Basic Science; Chonnam National University; Gwangju 500-757 Korea
| | - Jae Nyoung Kim
- Department of Chemistry and Institute of Basic Science; Chonnam National University; Gwangju 500-757 Korea
| |
Collapse
|
8
|
Chang KH, Lin CH, Chen HC, Huang HY, Chen SL, Lin TH, Ramesh C, Huang CC, Fung HC, Wu YR, Huang HJ, Lee-Chen GJ, Hsieh-Li HM, Yao CF. The Potential of Indole/Indolylquinoline Compounds in Tau Misfolding Reduction by Enhancement of HSPB1. CNS Neurosci Ther 2016; 23:45-56. [PMID: 27424519 DOI: 10.1111/cns.12592] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 06/17/2016] [Accepted: 06/19/2016] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Neurofibrillary tangles formed from tau misfolding have long been considered one of the pathological hallmarks of Alzheimer's disease (AD). The misfolding of tau in AD correlates with the clinical progression of AD and inhibition or reversal of tau misfolding may protect the affected neurons. METHODS We generated 293 and SH-SY5Y cells expressing DsRed-tagged pro-aggregation mutant of repeat domain of tau (ΔK280 tauRD ) to test indole/indolylquinoline derivatives for reducing tau misfolding and neuroprotection. RESULTS Four of the 10 derivatives tested displayed good misfolding-inhibitory effects on Tet-On 293 cells. Among them, NC009-1 and NC009-7 enhanced heat-shock 27 kDa protein 1 (HSPB1) expression to increase ∆K280 tauRD -DsRed solubility and promoted neurite outgrowth in Tet-On SH-SY5Y cells. Knockdown of HSPB1 resulted in decreased ∆K280 tauRD -DsRed solubility and reduced neurite outgrowth, which were rescued by addition of NC009-1/NC009-7. Treatment with indole/indolylquinoline derivatives also improved neuronal cell viability and neurite outgrowth in mouse hippocampal primary culture under tau cytotoxicity. CONCLUSION Our results demonstrate how indole/indolylquinoline derivatives are likely to work in tau misfolding reduction, providing insight into the possible working mechanism of indole and indolylquinoline derivatives in AD treatment.
Collapse
Affiliation(s)
- Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Hsin Lin
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsuan-Chiang Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hsin-Yu Huang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Shu-Ling Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Te-Hsien Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chintakunta Ramesh
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Chin-Chang Huang
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hon-Chung Fung
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hei-Jen Huang
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
9
|
Liu CY, Wu PT, Wang JP, Fan PW, Hsieh CH, Su CL, Chiu CC, Yao CF, Fang K. An indolylquinoline derivative promotes apoptosis in human lung cancer cells by impairing mitochondrial functions. Apoptosis 2016; 20:1471-82. [PMID: 26349782 DOI: 10.1007/s10495-015-1165-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A number of effective anti-cancer drugs contain either indole or quinoline group. Compounds fused indole and quinoline moieties altogether as indolylquinoline were rarely reported as anti-cancer agents. We reported here that a synthetic indolylquinoline derivative, 3-((7-ethyl-1H-indol-3-yl)-methyl)-2-methylquinoline (EMMQ), inhibited the growth of human non-small cell lung cancer (NSCLC) cells in dose- and time-dependent manners. The cytotoxicity was mediated through apoptotic cell death that began with mitochondrial membrane potential interruption and DNA damage. EMMQ caused transient elevation of p53 that assists in cytochrome c release, cleavage of downstream PARP and procaspase-3 and mitochondria-related apoptosis. The degree of apoptotic cell death depends on the status of tumor suppressor p53 of the target cells. H1299 cells with stable ectopic expression of p53 induced cytotoxicity by disrupting mitochondria functions that differed with those transfected with mutant p53. Knocking-down of p53 attenuated drug effects. EMMQ suppressed the growth of A549 tumor cells in xenograft tumors by exhibiting apoptosis characteristics. Given its small molecular weight acting as an effective p53 regulator in NSCLC cells, EMMQ could be an addition to the current list of lung cancer treatment.
Collapse
Affiliation(s)
- Chun-Yen Liu
- Department of Life Science, National Taiwan Normal University, 88 Ting-Chow Rd, Sec 4, Taipei, 116, Taiwan
| | - Pei-Tsen Wu
- Department of Life Science, National Taiwan Normal University, 88 Ting-Chow Rd, Sec 4, Taipei, 116, Taiwan
| | - Jing-Ping Wang
- Department of Life Science, National Taiwan Normal University, 88 Ting-Chow Rd, Sec 4, Taipei, 116, Taiwan
| | - Po-Wei Fan
- Department of Life Science, National Taiwan Normal University, 88 Ting-Chow Rd, Sec 4, Taipei, 116, Taiwan
| | - Chang-Hung Hsieh
- Department of Life Science, National Taiwan Normal University, 88 Ting-Chow Rd, Sec 4, Taipei, 116, Taiwan
| | - Chun-Li Su
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Kang Fang
- Department of Life Science, National Taiwan Normal University, 88 Ting-Chow Rd, Sec 4, Taipei, 116, Taiwan.
| |
Collapse
|
10
|
Syntheses of 4-Indolylquinoline Derivatives via Reductive Cyclization of Indolylnitrochalcone Derivatives by Fe/HCl. Molecules 2015; 20:22499-519. [PMID: 26694335 PMCID: PMC6332431 DOI: 10.3390/molecules201219862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 11/29/2022] Open
Abstract
An easy and efficient procedure for the synthesis of 4-indolylquinoline derivatives is described. This process involves two steps, the first of which is the Michael addition of indole to nitrochalcones promoted by sulfamic acid under solvent free conditions and the second step is a reductive cyclization of the indolylnitrochalcone intermediates to 4-indolylquinoline derivatives by Fe/HCl in ethanol. In both steps, the reactions are clean and the yields of products are high.
Collapse
|
11
|
Chang KH, Chiu YJ, Chen SL, Huang CH, Lin CH, Lin TH, Lee CM, Ramesh C, Wu CH, Huang CC, Fung HC, Chen YC, Lin JY, Yao CF, Huang HJ, Lee-Chen GJ, Lee MC, Hsieh-Li HM. The potential of synthetic indolylquinoline derivatives for Aβ aggregation reduction by chemical chaperone activity. Neuropharmacology 2015; 101:309-19. [PMID: 26362358 DOI: 10.1016/j.neuropharm.2015.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/19/2015] [Accepted: 09/03/2015] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia associated with progressive cognitive decline and memory loss. Extracellular β-amyloid (Aβ) is a major constituent of senile plaques, one of the pathological hallmarks of AD. Aβ deposition causes neuronal death via a number of possible mechanisms such as increasing oxidative stress. Therefore therapeutic approaches to identify novel Aβ aggregate reducers could be effective for AD treatment. Using a Trx-His-Aβ biochemical assay, we screened 11 synthetic indolylquinoline compounds, and found NC009-1, -2, -6 and -7 displaying potential to reduce Aβ aggregation. Treating Tet-On Aβ-GFP 293 cells with these compounds reduced Aβ aggregation and reactive oxygen species. These compounds also promoted neurite outgrowth in Tet-On Aβ-GFP SH-SY5Y cells. Furthermore, treatment with above compounds improved neuronal cell viability, neurite outgrowth, and synaptophysin expression level in mouse hippocampal primary culture under oligomeric Aβ-induced cytotoxicity. Moreover, the tested NC009-1 significantly ameliorated Aβ-induced inhibition of hippocampal long-term potentiation in mouse hippocampal slices. Our results demonstrate how synthetic indolylquinoline compounds are likely to work as chemical chaperones in Aβ-aggregation reduction and neuroprotection, providing insight into the possible applications of indolylquinoline compounds in AD treatment.
Collapse
Affiliation(s)
- Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei 10507, Taiwan
| | - Ya-Jen Chiu
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Shu-Ling Chen
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chen-Hsiang Huang
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chih-Hsin Lin
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei 10507, Taiwan
| | - Te-Hsien Lin
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chi-Mei Lee
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chintakunta Ramesh
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chung-Hsin Wu
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chin-Chang Huang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei 10507, Taiwan
| | - Hon-Chung Fung
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei 10507, Taiwan
| | - Yi-Chun Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei 10507, Taiwan
| | - Jung-Yaw Lin
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Hei-Jen Huang
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management, Taipei 11260, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan.
| | - Ming-Chung Lee
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan.
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan.
| |
Collapse
|
12
|
Gohain M, Lin S, Bezuidenhoudt BC. Al(OTf)3-catalyzed SN2′ substitution of the β-hydroxy group in Morita–Baylis–Hillman adducts with indoles. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.03.131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Rajawinslin RR, Ichake SS, Kavala V, Gawande SD, Huang YH, Kuo CW, Yao CF. Iron/acetic acid mediated synthesis of 6,7-dihydrodibenzo[b,j][1,7]phenanthroline derivatives via intramolecular reductive cyclization. RSC Adv 2015. [DOI: 10.1039/c5ra06395g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
An efficient iron/acetic acid mediated intramolecular reductive cyclization protocol was developed for the synthesis of novel 6,7-dihydrodibenzo[b,j][1,7]phenanthroline derivatives.
Collapse
Affiliation(s)
- R. R. Rajawinslin
- Department of Chemistry
- National Taiwan Normal University
- Taipei-116
- ROC
| | - Sachin S. Ichake
- Department of Chemistry
- National Taiwan Normal University
- Taipei-116
- ROC
| | | | - Sachin D. Gawande
- Department of Chemistry
- National Taiwan Normal University
- Taipei-116
- ROC
| | - Yi-Hsiang Huang
- Department of Chemistry
- National Taiwan Normal University
- Taipei-116
- ROC
| | - Chun-Wei Kuo
- Department of Chemistry
- National Taiwan Normal University
- Taipei-116
- ROC
| | - Ching-Fa Yao
- Department of Chemistry
- National Taiwan Normal University
- Taipei-116
- ROC
| |
Collapse
|
14
|
Goswami P, Borah AJ, Phukan P. Formation of Cyclohepta[b]indole Scaffolds via Heck Cyclization: A Strategy for Structural Analogues of Ervatamine Group of Indole Alkaloid. J Org Chem 2014; 80:438-46. [PMID: 25435251 DOI: 10.1021/jo502443a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ervatamine, silicine, methuenine, etc., are naturally occurring alkaloids that exhibit antimicrobial, anticancer, and anti-HIV activities. Indole fused with a seven-membered carbocyclic ring is a commonly observed structural feature among this series of bioactive compounds. This work describes a strategic approach for the synthesis of cyclohepta[b]indole structural scaffolds. The synthetic strategy consists of a solvent-free Baylis-Hillman reaction of 2-bromobenzaldehydes, followed by iodine-catalyzed C-alkylation of indole with the Baylis-Hillman adducts. Finally, intramolecular Heck coupling reaction using Pd(OAc)2 as catalyst in the presence of benzyltrimethylammonium bromide under microwave condition produced the desired cyclohepta[b]indole derivatives.
Collapse
Affiliation(s)
| | - Arun Jyoti Borah
- Department of Chemistry, Gauhati University, Guwahati, 781014 Assam, India
| | - Prodeep Phukan
- Department of Chemistry, Gauhati University, Guwahati, 781014 Assam, India
| |
Collapse
|
15
|
Rajawinslin RR, Gawande SD, Kavala V, Huang YH, Kuo CW, Kuo TS, Chen ML, He CH, Yao CF. Iron/acetic acid mediated intermolecular tandem C–C and C–N bond formation: an easy access to acridinone and quinoline derivatives. RSC Adv 2014. [DOI: 10.1039/c4ra06410k] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
An efficient iron/acetic acid mediated one pot reductive cyclization protocol was successfully developed for the synthesis of acridinone and quinoline derivatives.
Collapse
Affiliation(s)
- R. R. Rajawinslin
- Department of Chemistry
- National Taiwan Normal University
- Taipei-116, Republic of China
| | - Sachin D. Gawande
- Department of Chemistry
- National Taiwan Normal University
- Taipei-116, Republic of China
| | - Veerababurao Kavala
- Department of Chemistry
- National Taiwan Normal University
- Taipei-116, Republic of China
| | - Yi-Hsiang Huang
- Department of Chemistry
- National Taiwan Normal University
- Taipei-116, Republic of China
| | - Chun-Wei Kuo
- Department of Chemistry
- National Taiwan Normal University
- Taipei-116, Republic of China
| | - Ting-Shen Kuo
- Department of Chemistry
- National Taiwan Normal University
- Taipei-116, Republic of China
| | - Mei-Ling Chen
- Department of Chemistry
- National Taiwan Normal University
- Taipei-116, Republic of China
| | - Chiu-Hui He
- Department of Chemistry
- National Taiwan Normal University
- Taipei-116, Republic of China
| | - Ching-Fa Yao
- Department of Chemistry
- National Taiwan Normal University
- Taipei-116, Republic of China
| |
Collapse
|
16
|
Janreddy D, Kavala V, Kuo CW, Kuo TS, He CH, Yao CF. The PdCl2-catalyzed sequential heterocyclization/Michael addition cascade in the synthesis of 2,3-disubstituted indoles. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.01.081] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Ramesh C, Lei PM, Janreddy D, Kavala V, Kuo CW, Yao CF. Synthesis of indolylquinolines, indolylacridines, and indolylcyclopenta[b]quinolines from the Baylis-Hillman adducts: an in situ [1,3]-sigmatropic rearrangement of an indole nucleus to access indolylacridines and indolylcyclopenta[b]quinolines. J Org Chem 2012; 77:8451-64. [PMID: 22967265 DOI: 10.1021/jo301313m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A simple and easy route to the synthesis of a variety of structurally diverse indolylquinolines, indolylacridines, and indolylcyclopenta[b]quinoline derivatives via the reductive cyclization of C-alkylated indole derivatives, derived from acyclic as well as cyclic Baylis-Hillman adducts with indoles, is described. An unusual in situ [1,3]-sigmatropic rearrangement of the indole nucleus was observed during the reductive cyclicization of α-regioselective B-H adducts containing indoles to produce indolylacridines and indolylcyclopenta[b]quinoline derivatives.
Collapse
Affiliation(s)
- Chintakunta Ramesh
- Department of Chemistry, National Taiwan Normal University, 88, Section 4, Tingchow Road, Taipei, Taiwan 116, Republic of China
| | | | | | | | | | | |
Collapse
|
18
|
Ramesh C, Lei PM, Kavala V, Kuo CW, Yao CF. A convenient one-pot preparation of 2-methyl-3-(phenylthio- methyl)quinolines from Morita-Baylis-Hillman adducts and their oxidation to the corresponding sulfones. Molecules 2012; 17:5081-94. [PMID: 22555297 PMCID: PMC6268867 DOI: 10.3390/molecules17055081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 11/16/2022] Open
Abstract
A convenient one-pot preparation of 2-methyl-3-(phenylthiomethyl)quinolines from Morita-Baylis-Hillman adducts via conjugate addition of thiols followed by reductive cyclization with Fe/AcOH was developed. The 2-methyl-3-(phenylthiomethyl)quinolines were transformed into 2-methyl-3-(phenylsulfonylmethyl)quinolines via m-CPBA-mediated oxidation.
Collapse
Affiliation(s)
| | | | | | | | - Ching-Fa Yao
- Author to whom correspondence should be addressed; ; Tel.: +886-2-2930-9092; Fax: +886-2-2932-4249
| |
Collapse
|
19
|
Janreddy D, Kavala V, Bosco JWJ, Kuo CW, Yao CF. An Easy Access to Carbazolones and 2,3-Disubstituted Indoles. European J Org Chem 2011. [DOI: 10.1002/ejoc.201001357] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Ramesh C, Raju BR, Kavala V, Kuo CW, Yao CF. A simple and facile route for the synthesis of 2H-1,4-benzoxazin-3-(4H)-ones via reductive cyclization of 2-(2-nitrophenoxy)acetonitrile adducts in the presence of Fe/acetic acid. Tetrahedron 2011. [DOI: 10.1016/j.tet.2010.11.095] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Ramesh C, Kavala V, Kuo CW, Yao CF. Iron/acetic acid-mediated carbon degradation: a facile route for the synthesis of quinoline derivatives. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.07.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Borthakur M, Gogoi S, Gogoi J, Boruah RC. Lewis acid catalyzed rapid synthesis of 5-hydroxy-benzo[g]indole scaffolds by a modified Nenitzescu reaction. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.07.129] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Ramesh C, Kavala V, Kuo CW, Raju BR, Yao CF. An Unprecedented Route for the Synthesis of 3,3′-Biindoles by Reductive Cyclization of 3-[2-Nitro-1-(2-nitrophenyl)ethyl]-1H-indoles Mediated by Iron/Acetic Acid. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000276] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|