1
|
Strauss P, Nuti F, Quagliata M, Papini AM, Hurevich M. Accelerated solid-phase synthesis of glycopeptides containing multiple N-glycosylated sites. Org Biomol Chem 2023; 21:1674-1679. [PMID: 36385318 DOI: 10.1039/d2ob01886a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Peptide fragments of glycoproteins containing multiple N-glycosylated sites are essential biochemical tools not only to investigate protein-protein interactions but also to develop glycopeptide-based diagnostics and immunotherapy. However, solid-phase synthesis of glycopeptides containing multiple N-glycosylated sites is hampered by difficult couplings, which results in a substantial drop in yield. To increase the final yield, large amounts of reagents but also time-consuming steps are required. Therefore, we propose herein to utilize heating and stirring in combination with low-loading solid supports to set up an accelerated route to obtain, by an efficient High-Temperature Fast Stirring Peptide Synthesis (HTFS-PS), glycopeptides containing multiple N-glycosylated sites using equimolar excess of the precious glycosylated building blocks.
Collapse
Affiliation(s)
- Poriah Strauss
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel.
| | - Francesca Nuti
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy.
| | - Michael Quagliata
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy.
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy.
| | - Mattan Hurevich
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel.
| |
Collapse
|
2
|
Wu J, Kaplaneris N, Ni S, Kaltenhäuser F, Ackermann L. Late-stage C(sp 2)-H and C(sp 3)-H glycosylation of C-aryl/alkyl glycopeptides: mechanistic insights and fluorescence labeling. Chem Sci 2020; 11:6521-6526. [PMID: 34094117 PMCID: PMC8152807 DOI: 10.1039/d0sc01260b] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
C(sp3)–H and C(sp2)–H glycosylations of structurally complex amino acids and peptides were accomplished through the assistance of triazole peptide-isosteres. The palladium-catalyzed peptide–saccharide conjugation provided modular access to structurally complex C-alkyl glycoamino acids, glycopeptides and C-aryl glycosides, while enabling the assembly of fluorescent-labeled glycoamino acids. The C–H activation approach represents an expedient and efficient strategy for peptide late-stage diversification in a programmable as well as chemo-, regio-, and diastereo-selective fashion. C–H glycosylations of complex amino acids and peptides were accomplished through the assistance of triazole peptide-isosteres. The palladium-catalyzed glycosylation provided access to complex C-glycosides and fluorescent-labeled glycoamino acids.![]()
Collapse
Affiliation(s)
- Jun Wu
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany
| | - Nikolaos Kaplaneris
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany
| | - Shaofei Ni
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany
| | - Felix Kaltenhäuser
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany
| | - Lutz Ackermann
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany .,German Center for Cardiovascular Research (DZHK) Potsdamer Strasse 58 10785 Berlin Germany
| |
Collapse
|
3
|
van
der Heden van
Noort GJ. Chemical Tools to Study Protein ADP-Ribosylation. ACS OMEGA 2020; 5:1743-1751. [PMID: 32039309 PMCID: PMC7003193 DOI: 10.1021/acsomega.9b03591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/08/2020] [Indexed: 05/03/2023]
Abstract
Post-translational modification of substrate proteins plays crucial roles in the regulation of their activity, cellular localization, and ability to be recognized by other proteins. One of those modifications involves the installment of adenosine-diphosphate-ribose (ADPr) onto nucleophilic side-chain groups of amino acid residues. This highly dynamic process is regulated by ADP-ribosyl transferases (ARTs) that install the ADPr-molecules on selected proteins and poly(ADP-ribosyl) glycohydrolases (PARGs) and (ADP-ribosyl)hydrolases (ARHs) that trim down and remove ADPr-chains. In this mini-review, the most recent advances in the chemical synthesis of ADPr-conjugates, poly-ADP-ribose, ADPr-peptides, and -proteins, and other tools to investigate ADPr-biology are discussed.
Collapse
|
4
|
Liu Q, van der Marel GA, Filippov DV. Chemical ADP-ribosylation: mono-ADPr-peptides and oligo-ADP-ribose. Org Biomol Chem 2020; 17:5460-5474. [PMID: 31112180 DOI: 10.1039/c9ob00501c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
ADP-ribosylation is an important post-translational modification that plays a pivotal role in many cellular processes, including cell signaling, DNA repair, gene regulation and apoptosis. Although chemical synthesis of mono- or poly-ADP-ribosylated biomolecules is extremely difficult due to the challenges in regio- and stereoselective glycosylation, suitable protective group manipulations and pyrophosphate construction, synthetic procedures towards these bio-related targets have been reported in recent years. Chemically synthesized well-defined ADP-ribose derivatives serve as useful tools in biological experiments aimed to further elucidate native ADP-ribosylation. In this review, we will discuss the synthetic studies on mono-ADP-ribosylated proteins and oligo-ADP-ribose chains. Future possible synthetic targets and upcoming new methods for the synthesis of these molecules are also included.
Collapse
Affiliation(s)
- Qiang Liu
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Gijsbert A van der Marel
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Dmitri V Filippov
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
5
|
Wang W, Subramanian P, Martinazzoli O, Wu J, Ackermann L. Glycopeptides by Linch‐Pin C−H Activations for Peptide‐Carbohydrate Conjugation by Manganese(I)‐Catalysis. Chemistry 2019; 25:10585-10589. [DOI: 10.1002/chem.201902788] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Wei Wang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| | - Parthasarathi Subramanian
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| | - Oscar Martinazzoli
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| | - Jun Wu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| |
Collapse
|
6
|
Hu X, Wang D, Tong Y, Tong L, Wang X, Zhu L, Xie H, Li S, Yang Y, Xu Y. Design, Synthesis, and Evaluation of Ribose-Modified Anilinopyrimidine Derivatives as EGFR Tyrosine Kinase Inhibitors. Front Chem 2017; 5:101. [PMID: 29250520 PMCID: PMC5715404 DOI: 10.3389/fchem.2017.00101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 10/30/2017] [Indexed: 12/21/2022] Open
Abstract
The synthesis of a series of ribose-modified anilinopyrimidine derivatives was efficiently achieved by utilizing DBU or tBuOLi-promoted coupling of ribosyl alcohols with 2,4,5-trichloropyrimidine as key step. Preliminary biological evaluation of this type of compounds as new EGFR tyrosine kinase inhibitors for combating EGFR L858R/T790M mutant associated with drug resistance in the treatment of non-small cell lung cancer revealed that 3-N-acryloyl-5-O-anilinopyrimidine ribose derivative 1a possessed potent and specific inhibitory activity against EGFR L858R/T790M over WT EGFR. Based upon molecular docking studies of the binding mode between compound 1a and EGFR, the distance between the Michael receptor and the pyrimidine scaffold is considered as an important factor for the inhibitory potency and future design of selective EGFR tyrosine kinase inhibitors against EGFR L858R/T790M mutants.
Collapse
Affiliation(s)
- Xiuqin Hu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Disha Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yi Tong
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Linjiang Tong
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xia Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Lili Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Hua Xie
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - You Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yufang Xu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
7
|
A facile synthesis of α-N-ribosyl-asparagine and α-N-ribosyl-glutamine building blocks. Molecules 2013; 18:8779-85. [PMID: 23887719 PMCID: PMC6270248 DOI: 10.3390/molecules18088779] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 07/16/2013] [Accepted: 07/19/2013] [Indexed: 11/16/2022] Open
Abstract
Adenosine diphosphate ribosylation (ADP-ribosylation) is a widely occurring post-translational modification of proteins at nucleophilic side chain of amino acid residues. Elucidation of ADP-ribosylation events would benefit greatly from the availability of well-defined ADP-ribosylated peptides and analogues thereof. In this paper we present a novel approach to the chemical synthesis of ribosylated amino acid building blocks using traceless Staudinger ligation. We describe an efficient and stereoselective synthesis of α-N-ribosyl-asparagine (α-N-ribosyl-Asn) and α-N-ribosyl-glutamine (α-N-ribosyl-Gln) building blocks starting from 5-tert-butyldiphenylsilyl-β-D-ribofuranosyl azide. The N-glycosyl aminoacids are produced in good yields as pure α-anomers, suitably protected for peptide synthesis.
Collapse
|
8
|
Kistemaker HAV, van Noort GJVDH, Overkleeft HS, van der Marel GA, Filippov DV. Stereoselective ribosylation of amino acids. Org Lett 2013; 15:2306-9. [PMID: 23614697 DOI: 10.1021/ol400929c] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The glycosylation properties of ribofuranosyl N-phenyltrifluoroacetimidates toward carboxamide side chains of asparagine and glutamine were investigated. Conditions were found that promote nearly exclusive formation of the α-anomerically configured N-glycosides. The strategy allows for the synthesis of Fmoc-amino acids suitably modified for the preparation of ADP-ribosylated peptides. Furthermore, ribosylation of serine with these donors proved to be completely α-selective, and for the first time, α-ribosylated glutamic and aspartic acid, the naturally occurring sites for poly-ADP-ribosylation, were synthesized.
Collapse
Affiliation(s)
- Hans A V Kistemaker
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
9
|
Nisic F, Speciale G, Bernardi A. Stereoselective Synthesis of α- and β-Glycofuranosyl Amides by Traceless Ligation of Glycofuranosyl Azides. Chemistry 2012; 18:6895-906. [DOI: 10.1002/chem.201200309] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Indexed: 02/02/2023]
|
10
|
Ziora ZM, Wimmer N, New R, Skwarczynski M, Toth I. Synthesis of glycolipopeptidic building blocks for carbohydrate receptor discovery. Carbohydr Res 2011; 346:1439-44. [DOI: 10.1016/j.carres.2011.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/08/2011] [Accepted: 03/09/2011] [Indexed: 01/04/2023]
|
11
|
Danalev D, Legentil L, Daniellou R, Nugier-Chauvin C, Ferrières V. Direct access to new β-d-galactofuranoconjugates: application to the synthesis of galactofuranosyl-l-cysteine and l-serine. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Nuti F, Peroni E, Real-Fernández F, Bonache MA, Le Chevalier-Isaad A, Chelli M, Lubin-Germain N, Uziel J, Rovero P, Lolli F, Papini AM. Posttranslationally modified peptides efficiently mimicking neoantigens: A challenge for theragnostics of autoimmune diseases. Biopolymers 2010; 94:791-9. [DOI: 10.1002/bip.21456] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|