1
|
Abstract
C-N coupling reactions were found to be attractive among researchers owing to
the importance of C-N bond formation in heterocyclic synthesis. Hence C-N bond formation
via amination reaction with the assistance of microwave radiations gained significant
attraction recently. Microwave-assisted reactions are greener, faster and generally efficient
compared to the conventional thermal reactions offering better purity of the product with
enhancement in the yield. It was surprisingly revealed that several new advancements in
amination reactions were highly influenced by this greener technology. This first review on
microwave-assisted amination reaction focuses on the novel amination strategies that
emerged with the help of microwave methodology, and covers literature up to 2019.
Collapse
Affiliation(s)
- Sankaran Radhika
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
| | - Mohan Neetha
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
| | - Thaipparambil Aneeja
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
| |
Collapse
|
2
|
Henary M, Kananda C, Rotolo L, Savino B, Owens EA, Cravotto G. Benefits and applications of microwave-assisted synthesis of nitrogen containing heterocycles in medicinal chemistry. RSC Adv 2020; 10:14170-14197. [PMID: 35498463 PMCID: PMC9051880 DOI: 10.1039/d0ra01378a] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/27/2020] [Indexed: 11/21/2022] Open
Abstract
Nitrogen containing heterocycles are of immense research interest because they are often found as naturally occurring bioactive compounds.
Collapse
Affiliation(s)
- Maged Henary
- Department of Chemistry
- Georgia State University
- Atlanta
- USA
- Center for Diagnostics and Therapeutics
| | - Carl Kananda
- Department of Chemistry
- Georgia State University
- Atlanta
- USA
| | - Laura Rotolo
- Department of Chemistry
- Georgia State University
- Atlanta
- USA
- Department of Drug Science and Technology and NIS – Centre for Nanostructured Interfaces and Surfaces
| | - Brian Savino
- Department of Chemistry
- Georgia State University
- Atlanta
- USA
| | - Eric A. Owens
- Department of Chemistry
- Georgia State University
- Atlanta
- USA
- Center for Diagnostics and Therapeutics
| | - Giancarlo Cravotto
- Department of Drug Science and Technology and NIS – Centre for Nanostructured Interfaces and Surfaces
- University of Turin
- 10125 Turin
- Italy
| |
Collapse
|
3
|
Hill CH, Viuff AH, Spratley SJ, Salamone S, Christensen SH, Read RJ, Moriarty NW, Jensen HH, Deane JE. Azasugar inhibitors as pharmacological chaperones for Krabbe disease. Chem Sci 2015; 6:3075-3086. [PMID: 26029356 PMCID: PMC4445328 DOI: 10.1039/c5sc00754b] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/20/2015] [Indexed: 12/21/2022] Open
Abstract
Krabbe disease is a devastating neurodegenerative disorder characterized by rapid demyelination of nerve fibers. This disease is caused by defects in the lysosomal enzyme β-galactocerebrosidase (GALC), which hydrolyzes the terminal galactose from glycosphingolipids. These lipids are essential components of eukaryotic cell membranes: substrates of GALC include galactocerebroside, the primary lipid component of myelin, and psychosine, a cytotoxic metabolite. Mutations of GALC that cause misfolding of the protein may be responsive to pharmacological chaperone therapy (PCT), whereby small molecules are used to stabilize these mutant proteins, thus correcting trafficking defects and increasing residual catabolic activity in cells. Here we describe a new approach for the synthesis of galacto-configured azasugars and the characterization of their interaction with GALC using biophysical, biochemical and crystallographic methods. We identify that the global stabilization of GALC conferred by azasugar derivatives, measured by fluorescence-based thermal shift assays, is directly related to their binding affinity, measured by enzyme inhibition. X-ray crystal structures of these molecules bound in the GALC active site reveal which residues participate in stabilizing interactions, show how potency is achieved and illustrate the penalties of aza/iminosugar ring distortion. The structure-activity relationships described here identify the key physical properties required of pharmacological chaperones for Krabbe disease and highlight the potential of azasugars as stabilizing agents for future enzyme replacement therapies. This work lays the foundation for new drug-based treatments of Krabbe disease.
Collapse
Affiliation(s)
- Chris H Hill
- Department of Haematology , Cambridge Institute for Medical Research , University of Cambridge , Cambridge CB2 0XY , UK .
| | - Agnete H Viuff
- Department of Chemistry , Aarhus University , Langelandsgade 140, 8000 Aarhus C. , Denmark .
| | - Samantha J Spratley
- Department of Haematology , Cambridge Institute for Medical Research , University of Cambridge , Cambridge CB2 0XY , UK .
| | - Stéphane Salamone
- Department of Chemistry , Aarhus University , Langelandsgade 140, 8000 Aarhus C. , Denmark .
| | - Stig H Christensen
- Department of Chemistry , Aarhus University , Langelandsgade 140, 8000 Aarhus C. , Denmark .
| | - Randy J Read
- Department of Haematology , Cambridge Institute for Medical Research , University of Cambridge , Cambridge CB2 0XY , UK .
| | - Nigel W Moriarty
- Physical Biosciences Division , Lawrence Berkeley National Laboratory , Berkeley , CA 94720 , USA
| | - Henrik H Jensen
- Department of Chemistry , Aarhus University , Langelandsgade 140, 8000 Aarhus C. , Denmark .
| | - Janet E Deane
- Department of Haematology , Cambridge Institute for Medical Research , University of Cambridge , Cambridge CB2 0XY , UK .
| |
Collapse
|