1
|
Flemmich L, Micura R. Synthesis of electrophile-tethered preQ 1 analogs for covalent attachment to preQ 1 RNA. Beilstein J Org Chem 2025; 21:483-489. [PMID: 40079022 PMCID: PMC11897656 DOI: 10.3762/bjoc.21.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
The preQ1 cIass-I riboswitch aptamer can utilize 7-aminomethyl-7-deazaguanine (preQ1) ligands that are equipped with an electrophilic handle for the covalent attachment of the ligand to the RNA. The simplicity of the underlying design of irreversibly bound ligand-RNA complexes has provided a new impetus in the fields of covalent RNA labeling and RNA drugging. Here, we present short and robust synthetic routes for such reactive preQ1 and (2,6-diamino-7-aminomethyl-7-deazapurine) DPQ1 ligands. The readily accessible key intermediates of preQ0 and DPQ0 (both bearing a nitrile moiety instead of the aminomethyl group) were reduced to the corresponding 7-formyl-7-deazapurine counterparts. These readily undergo reductive amination to form the hydroxyalkyl handles, which were further converted to the haloalkyl or mesyloxyalkyl-modified target compounds. In addition, we report hydrogenation conditions for preQ0 and DPQ0 that allow for cleaner and faster access to preQ1 compared to existing routes and provide the novel compound DPQ1.
Collapse
Affiliation(s)
- Laurin Flemmich
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80-82, 6020 Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Heis F, Gallienne E, Martin OR. Synthesis of the aminocyclopentenediol fragment of queuosine by way of the stereoselective addition of an organometallic reagent to a N-t-butanesulfinyl glycosylamine. Org Biomol Chem 2023; 22:106-113. [PMID: 38050471 DOI: 10.1039/d3ob01713c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
An innovative, concise synthesis of the aminocyclopentenediol fragment of queuosine is reported. The synthesis is based on the stereocontrolled addition of a vinylGrignard·LiCl reagent to a t-butanesulfinyl L-ribofuranosylamine, followed by dehydrodeoxygenation to generate a second vinyl group and ring-closing metathesis to form the five-membered ring scaffold of the natural product. This approach has the potential for the development of a larger scale synthesis.
Collapse
Affiliation(s)
- Floriane Heis
- Institute of Organic and Analytical Chemistry, UMR 7311, University of Orleans and CNRS, Rue de Chartres, 45067 Orleans, France.
| | - Estelle Gallienne
- Institute of Organic and Analytical Chemistry, UMR 7311, University of Orleans and CNRS, Rue de Chartres, 45067 Orleans, France.
| | - Olivier R Martin
- Institute of Organic and Analytical Chemistry, UMR 7311, University of Orleans and CNRS, Rue de Chartres, 45067 Orleans, France.
| |
Collapse
|
3
|
Pichler A, Hillmeier M, Heiss M, Peev E, Xefteris S, Steigenberger B, Thoma I, Müller M, Borsò M, Imhof A, Carell T. Synthesis and Structure Elucidation of Glutamyl-Queuosine. J Am Chem Soc 2023; 145:25528-25532. [PMID: 37967838 PMCID: PMC10690763 DOI: 10.1021/jacs.3c10075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023]
Abstract
Queuosine is one of the most complex hypermodified RNA nucleosides found in the Wobble position of tRNAs. In addition to Queuosine itself, several further modified derivatives are known, where the cyclopentene ring structure is additionally modified by a galactosyl-, a mannosyl-, or a glutamyl-residue. While sugar-modified Queuosine derivatives are found in the tRNAs of vertebrates, glutamylated Queuosine (gluQ) is only known in bacteria. The exact structure of gluQ, particularly with respect to how and where the glutamyl side chain is connected to the Queuosine cyclopentene side chain, is unknown. Here we report the first synthesis of gluQ and, using UHPLC-MS-coinjection and NMR studies, we show that the isolated natural gluQ is the α-allyl-connected gluQ compound.
Collapse
Affiliation(s)
- Alexander Pichler
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Markus Hillmeier
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Matthias Heiss
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Elsa Peev
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Stylianos Xefteris
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Barbara Steigenberger
- Mass
Spectrometry Core Facility, Max Planck Institute
of Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Planegg, Germany
| | - Ines Thoma
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Markus Müller
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Marco Borsò
- Department
of Molecular Biology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, Martinsried, 82152 Planegg, Germany
| | - Axel Imhof
- Department
of Molecular Biology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, Martinsried, 82152 Planegg, Germany
| | - Thomas Carell
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
4
|
Cotter M, Varghese S, Chevot F, Fergus C, Kelly VP, Connon SJ, Southern JM. Queuine Analogues Incorporating the 7-Aminomethyl-7-deazaguanine Core: Structure-Activity Relationships in the Treatment of Experimental Autoimmune Encephalomyelitis. ChemMedChem 2023; 18:e202300207. [PMID: 37350546 DOI: 10.1002/cmdc.202300207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 06/24/2023]
Abstract
A library of queuine analogues targeting the modification of tRNA isoacceptors for Asp, Asn, His and Tyr catalysed by queuine tRNA ribosyltransferase (QTRT, also known as TGT) was evaluated in the treatment of a chronic multiple sclerosis model: murine experimental autoimmune encephalomyelitis. Several active 7-deazaguanines emerged, together with a structure-activity relationship involving the necessity for a flexible alkyl chain of fixed length.
Collapse
Affiliation(s)
- Michelle Cotter
- School of Chemistry, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College, Dublin, Ireland
| | - Sreeja Varghese
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College, Dublin, Ireland
| | - Franciane Chevot
- School of Chemistry, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College, Dublin, Ireland
| | - Claire Fergus
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College, Dublin, Ireland
| | - Vincent P Kelly
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College, Dublin, Ireland
| | - Stephen J Connon
- School of Chemistry, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College, Dublin, Ireland
| | - J Mike Southern
- School of Chemistry, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College, Dublin, Ireland
| |
Collapse
|
5
|
Flemmich L, Moreno S, Micura R. Synthesis of O 6-alkylated preQ 1 derivatives. Beilstein J Org Chem 2021; 17:2295-2301. [PMID: 34621392 PMCID: PMC8450960 DOI: 10.3762/bjoc.17.147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022] Open
Abstract
A naturally occurring riboswitch can utilize 7-aminomethyl-O 6-methyl-7-deazaguanine (m6preQ1) as cofactor for methyl group transfer resulting in cytosine methylation. This recently discovered riboswitch-ribozyme activity opens new avenues for the development of RNA labeling tools based on tailored O 6-alkylated preQ1 derivatives. Here, we report a robust synthesis for this class of pyrrolo[2,3-d]pyrimidines starting from readily accessible N 2-pivaloyl-protected 6-chloro-7-cyano-7-deazaguanine. Substitution of the 6-chloro atom with the alcoholate of interest proceeds straightforward. The transformation of the 7-cyano substituent into the required aminomethyl group turned out to be challenging and was solved by a hydration reaction sequence on a well-soluble dimethoxytritylated precursor via in situ oxime formation. The synthetic path now provides a solid foundation to access O 6-alkylated 7-aminomethyl-7-deazaguanines for the development of RNA labeling tools based on the preQ1 class-I riboswitch scaffold.
Collapse
Affiliation(s)
- Laurin Flemmich
- Institute of Organic Chemistry, Center for molecular Biosciences Innsbruck (CMBI), Innrain 80-82, 6020 Innsbruck, Austria
| | - Sarah Moreno
- Institute of Organic Chemistry, Center for molecular Biosciences Innsbruck (CMBI), Innrain 80-82, 6020 Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry, Center for molecular Biosciences Innsbruck (CMBI), Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
6
|
Richard P, Kozlowski L, Guillorit H, Garnier P, McKnight NC, Danchin A, Manière X. Queuine, a bacterial-derived hypermodified nucleobase, shows protection in in vitro models of neurodegeneration. PLoS One 2021; 16:e0253216. [PMID: 34379627 PMCID: PMC8357117 DOI: 10.1371/journal.pone.0253216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/29/2021] [Indexed: 11/26/2022] Open
Abstract
Growing evidence suggests that human gut bacteria, which comprise the microbiome, are linked to several neurodegenerative disorders. An imbalance in the bacterial population in the gut of Parkinson's disease (PD) and Alzheimer's disease (AD) patients has been detected in several studies. This dysbiosis very likely decreases or increases microbiome-derived molecules that are protective or detrimental, respectively, to the human body and those changes are communicated to the brain through the so-called 'gut-brain-axis'. The microbiome-derived molecule queuine is a hypermodified nucleobase enriched in the brain and is exclusively produced by bacteria and salvaged by humans through their gut epithelium. Queuine replaces guanine at the wobble position (position 34) of tRNAs with GUN anticodons and promotes efficient cytoplasmic and mitochondrial mRNA translation. Queuine depletion leads to protein misfolding and activation of the endoplasmic reticulum stress and unfolded protein response pathways in mice and human cells. Protein aggregation and mitochondrial impairment are often associated with neural dysfunction and neurodegeneration. To elucidate whether queuine could facilitate protein folding and prevent aggregation and mitochondrial defects that lead to proteinopathy, we tested the effect of chemically synthesized queuine, STL-101, in several in vitro models of neurodegeneration. After neurons were pretreated with STL-101 we observed a significant decrease in hyperphosphorylated alpha-synuclein, a marker of alpha-synuclein aggregation in a PD model of synucleinopathy, as well as a decrease in tau hyperphosphorylation in an acute and a chronic model of AD. Additionally, an associated increase in neuronal survival was found in cells pretreated with STL-101 in both AD models as well as in a neurotoxic model of PD. Measurement of queuine in the plasma of 180 neurologically healthy individuals suggests that healthy humans maintain protective levels of queuine. Our work has identified a new role for queuine in neuroprotection uncovering a therapeutic potential for STL-101 in neurological disorders.
Collapse
Affiliation(s)
- Patricia Richard
- Stellate Therapeutics Inc., JLABS @ NYC, New York, New York, United States of America
| | | | - Hélène Guillorit
- Stellate Therapeutics SAS, Paris, France
- Institut de Génomique Fonctionnelle, Montpellier, France
| | | | - Nicole C. McKnight
- Stellate Therapeutics Inc., JLABS @ NYC, New York, New York, United States of America
| | | | | |
Collapse
|
7
|
Brooks AF, Garcia GA, Showalter HD. Synthesis of azide congeners of
preQ
1
as potential substrates for
tRNA
guanine transglycosylase. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Allen F. Brooks
- Department of Medicinal Chemistry University of Michigan Ann Arbor Michigan USA
| | - George A. Garcia
- Department of Medicinal Chemistry University of Michigan Ann Arbor Michigan USA
| | - Hollis D. Showalter
- Department of Medicinal Chemistry University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
8
|
Jung J, Czabany T, Wilding B, Klempier N, Nidetzky B. Kinetic Analysis and Probing with Substrate Analogues of the Reaction Pathway of the Nitrile Reductase QueF from Escherichia coli. J Biol Chem 2016; 291:25411-25426. [PMID: 27754868 DOI: 10.1074/jbc.m116.747014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/01/2016] [Indexed: 11/06/2022] Open
Abstract
The enzyme QueF catalyzes a four-electron reduction of a nitrile group into an amine, the only reaction of this kind known in biology. In nature, QueF converts 7-cyano-7-deazaguanine (preQ0) into 7-aminomethyl-7-deazaguanine (preQ1) for the biosynthesis of the tRNA-inserted nucleoside queuosine. The proposed QueF mechanism involves a covalent thioimide adduct between preQ0 and a cysteine nucleophile in the enzyme, and this adduct is subsequently converted into preQ1 in two NADPH-dependent reduction steps. Here, we show that the Escherichia coli QueF binds preQ0 in a strongly exothermic process (ΔH = -80.3 kJ/mol; -TΔS = 37.9 kJ/mol, Kd = 39 nm) whereby the thioimide adduct is formed with half-of-the-sites reactivity in the homodimeric enzyme. Both steps of preQ0 reduction involve transfer of the 4-pro-R-hydrogen from NADPH. They proceed about 4-7-fold more slowly than trapping of the enzyme-bound preQ0 as covalent thioimide (1.63 s-1) and are thus mainly rate-limiting for the enzyme's kcat (=0.12 s-1). Kinetic studies combined with simulation reveal a large primary deuterium kinetic isotope effect of 3.3 on the covalent thioimide reduction and a smaller kinetic isotope effect of 1.8 on the imine reduction to preQ1 7-Formyl-7-deazaguanine, a carbonyl analogue of the imine intermediate, was synthesized chemically and is shown to be recognized by QueF as weak ligand for binding (ΔH = -2.3 kJ/mol; -TΔS = -19.5 kJ/mol) but not as substrate for reduction or oxidation. A model of QueF substrate recognition and a catalytic pathway for the enzyme are proposed based on these data.
Collapse
Affiliation(s)
- Jihye Jung
- From the Austrian Centre of Industrial Biotechnology, Petersgasse 14.,the Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWIGraz, Petersgasse 12/1, and
| | - Tibor Czabany
- the Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWIGraz, Petersgasse 12/1, and
| | - Birgit Wilding
- From the Austrian Centre of Industrial Biotechnology, Petersgasse 14.,the Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Norbert Klempier
- the Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Bernd Nidetzky
- From the Austrian Centre of Industrial Biotechnology, Petersgasse 14, .,the Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWIGraz, Petersgasse 12/1, and
| |
Collapse
|
9
|
De Coen LM, Heugebaert TSA, García D, Stevens CV. Synthetic Entries to and Biological Activity of Pyrrolopyrimidines. Chem Rev 2015; 116:80-139. [DOI: 10.1021/acs.chemrev.5b00483] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Laurens M. De Coen
- Department of Sustainable
Organic Chemistry and Technology, Ghent University, Coupure links
653, B-9000 Ghent, Belgium
| | - Thomas S. A. Heugebaert
- Department of Sustainable
Organic Chemistry and Technology, Ghent University, Coupure links
653, B-9000 Ghent, Belgium
| | - Daniel García
- Department of Sustainable
Organic Chemistry and Technology, Ghent University, Coupure links
653, B-9000 Ghent, Belgium
| | - Christian V. Stevens
- Department of Sustainable
Organic Chemistry and Technology, Ghent University, Coupure links
653, B-9000 Ghent, Belgium
| |
Collapse
|
10
|
Busto E, Martínez-Montero L, Gotor V, Gotor-Fernández V. Chemoenzymatic Asymmetric Synthesis of Serotonin Receptor Agonist (R)-Frovatriptan. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Gerber HD, Klebe G. Concise and efficient syntheses of preQ1 base, Q base, and (ent)-Q base. Org Biomol Chem 2013; 10:8660-8. [PMID: 23032613 DOI: 10.1039/c2ob26387d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To thoroughly study the functional role of prokaryotic t-RNA-guanine-transglycosylases which are essential in the pathogenesis of shigellosis, novel efficient, high-yielding synthetic approaches for preQ(1) base, Q base, as well as for (ent)-Q base mainly employing cheap and readily available starting materials have been developed. Q base as well as (ent)-Q base are accessible starting from preQ(1) base via nucleophilic substitution reactions with appropriately decorated halocyclopentenyl synthons, prior to that prepared from naturally occurring carbohydrates.
Collapse
Affiliation(s)
- Hans-Dieter Gerber
- Institut für Pharmazeutische Chemie der Philipps-Universität Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | | |
Collapse
|
12
|
Brooks AF, Vélez-Martínez CS, Showalter HDH, Garcia GA. Investigating the prevalence of queuine in Escherichia coli RNA via incorporation of the tritium-labeled precursor, preQ(1). Biochem Biophys Res Commun 2012; 425:83-8. [PMID: 22819844 DOI: 10.1016/j.bbrc.2012.07.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/13/2012] [Indexed: 10/28/2022]
Abstract
There are over 100 modified bases that occur in RNA with the majority found in transfer RNA. It has been widely believed that the queuine modification is limited to four transfer RNA species in vivo. However, given the vast amount of the human genome (60-70%) that is transcribed into non-coding RNA (Mattick [10]), probing the presence of modified bases in these RNAs is of fundamental importance. The mechanism of incorporation of queuine, via transglycosylation, makes this uniquely poised to probe base modification in RNA. Results of incubations of Escherichia coli cell cultures with [(3)H] preQ(1) (a queuine precursor in eubacteria) clearly demonstrate preQ(1) incorporation into a number of RNA species of various sizes larger than transfer RNA. Specifically, significant levels of preQ(1) incorporation into ribosomal RNA are observed. The modification of other large RNAs was also observed. These results confirm that non-coding RNAs contain modified bases and lead to the supposition that these modifications are necessary to control non-coding RNA structure and function as has been shown for transfer RNA.
Collapse
Affiliation(s)
- Allen F Brooks
- Department of Medicinal Chemistry, University of Michigan, 428 Church St., Ann Arbor, MI 48109-1065, USA
| | | | | | | |
Collapse
|
13
|
Busto E, Gotor-Fernández V, Gotor V. Asymmetric chemoenzymatic synthesis of ramatroban using lipases and oxidoreductases. J Org Chem 2012; 77:4842-8. [PMID: 22515546 DOI: 10.1021/jo300552v] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A chemoenzymatic asymmetric route for the preparation of enantiopure (R)-ramatroban has been developed for the first time. The action of lipases and oxidoreductases has been independently studied, and both were found as excellent biocatalysts for the production of adequate chiral intermediates under very mild reaction conditions. CAL-B efficiently catalyzed the resolution of (±)-2,3,4,9-tetrahydro-1H-carbazol-3-ol that was acylated with high stereocontrol. On the other hand, ADH-A mediated bioreduction of 4,9-dihydro-1H-carbazol-3(2H)-one provided an alternative access to the same enantiopure alcohol previously obtained through lipase-catalyzed resolution, a useful synthetic building block in the synthesis of ramatroban. Inversion of the absolute configuration of (S)-2,3,4,9-tetrahydro-1H-carbazol-3-ol has been identified as a key point in the synthetic route, optimizing this process to avoid racemization of the azide intermediate, finally yielding (R)-ramatroban in enantiopure form by the formation of the corresponding amine and the convenient functionalization of both exocyclic and indole nitrogen atoms.
Collapse
Affiliation(s)
- Eduardo Busto
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | | | | |
Collapse
|
14
|
Chen YC, Brooks AF, Goodenough-Lashua DM, Kittendorf JD, Showalter HD, Garcia GA. Evolution of eukaryal tRNA-guanine transglycosylase: insight gained from the heterocyclic substrate recognition by the wild-type and mutant human and Escherichia coli tRNA-guanine transglycosylases. Nucleic Acids Res 2010; 39:2834-44. [PMID: 21131277 PMCID: PMC3074131 DOI: 10.1093/nar/gkq1188] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The enzyme tRNA-guanine transglycosylase (TGT) is involved in the queuosine modification of tRNAs in eukarya and eubacteria and in the archaeosine modification of tRNAs in archaea. However, the different classes of TGTs utilize different heterocyclic substrates (and tRNA in the case of archaea). Based on the X-ray structural analyses, an earlier study [Stengl et al. (2005) Mechanism and substrate specificity of tRNA-guanine transglycosylases (TGTs): tRNA-modifying enzymes from the three different kingdoms of life share a common catalytic mechanism. Chembiochem, 6, 1926–1939] has made a compelling case for the divergent evolution of the eubacterial and archaeal TGTs. The X-ray structure of the eukaryal class of TGTs is not known. We performed sequence homology and phylogenetic analyses, and carried out enzyme kinetics studies with the wild-type and mutant TGTs from Escherichia coli and human using various heterocyclic substrates that we synthesized. Observations with the Cys145Val (E. coli) and the corresponding Val161Cys (human) TGTs are consistent with the idea that the Cys145 evolved in eubacterial TGTs to recognize preQ1 but not queuine, whereas the eukaryal equivalent, Val161, evolved for increased recognition of queuine and a concomitantly decreased recognition of preQ1. Both the phylogenetic and kinetic analyses support the conclusion that all TGTs have divergently evolved to specifically recognize their cognate heterocyclic substrates.
Collapse
Affiliation(s)
- Yi-Chen Chen
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA
| | | | | | | | | | | |
Collapse
|