1
|
Hossinimotlagh S, Zarnegaryan A, Dehbanipour Z. Polyoxometalate on functionalized graphene sheets as a hybrid catalyst for efficient synthesis of benzimidazoles. Sci Rep 2025; 15:7880. [PMID: 40050314 PMCID: PMC11885448 DOI: 10.1038/s41598-025-91607-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/21/2025] [Indexed: 03/09/2025] Open
Abstract
In this work, graphene oxide (GO) nanoparticles were synthesized and subsequently modified using 3-aminopropyltrimethoxysilane (APTMS). An Anderson-type polyoxometalate [(C4H9)4N]2[CrMo6O18(OH)6] was then immobilized on the surface of the modified graphene oxide nanoparticles. The obtained catalyst was characterized using Fourier-transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDS), inductively coupled plasma (ICP), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Raman spectroscopy, and X-ray diffraction (XRD). The catalytic performance of this recyclable hybrid catalyst was evaluated for the synthesis of benzimidazole derivatives at 75 °C under solvent-based conditions. The hybrid catalyst demonstrated easy separation and could be successfully reused at least six times with only a slight reduction in the yield of the desired product. Leaching and recovery tests, along with FT-IR analysis, confirmed the high stability of the catalytically active species and the heterogeneous nature of the catalyst.
Collapse
Affiliation(s)
| | - Ali Zarnegaryan
- Department of Chemistry, Yasouj University, 75918-74831, Yasouj, Iran.
| | - Zahra Dehbanipour
- Department of Chemistry, Yasouj University, 75918-74831, Yasouj, Iran
| |
Collapse
|
2
|
Rubab L, Anum A, Al-Hussain SA, Irfan A, Ahmad S, Ullah S, Al-Mutairi AA, Zaki MEA. Green Chemistry in Organic Synthesis: Recent Update on Green Catalytic Approaches in Synthesis of 1,2,4-Thiadiazoles. Catalysts 2022; 12:1329. [DOI: 10.3390/catal12111329] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
Green (sustainable) chemistry provides a framework for chemists, pharmacists, medicinal chemists and chemical engineers to design processes, protocols and synthetic methodologies to make their contribution to the broad spectrum of global sustainability. Green synthetic conditions, especially catalysis, are the pillar of green chemistry. Green chemistry principles help synthetic chemists overcome the problems of conventional synthesis, such as slow reaction rates, unhealthy solvents and catalysts and the long duration of reaction completion time, and envision solutions by developing environmentally benign catalysts, green solvents, use of microwave and ultrasonic radiations, solvent-free, grinding and chemo-mechanical approaches. 1,2,4-thiadiazole is a privileged structural motif that belongs to the class of nitrogen–sulfur-containing heterocycles with diverse medicinal and pharmaceutical applications. This comprehensive review systemizes types of green solvents, green catalysts, ideal green organic synthesis characteristics and the green synthetic approaches, such as microwave irradiation, ultrasound, ionic liquids, solvent-free, metal-free conditions, green solvents and heterogeneous catalysis to construct different 1,2,4-thiadiazoles scaffolds.
Collapse
Affiliation(s)
- Laila Rubab
- Department of Chemistry, Sargodha Campus, The University of Lahore, Sargodha 40100, Pakistan
| | - Ayesha Anum
- Hamdard Institute of Pharmaceutical Sciences, Islamabad Campus, Hamdard University of Pharmaceutical Sciences, Islamabad 44000, Pakistan
| | - Sami A. Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Sami Ullah
- Department of Chemistry, Sargodha Campus, The University of Lahore, Sargodha 40100, Pakistan
| | - Aamal A. Al-Mutairi
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Magdi E. A. Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| |
Collapse
|
3
|
An overview of quinoxaline synthesis by green methods: recent reports. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Quinoxalines and their derivatives belong to an important class of bicyclic aromatic heterocyclic system, also known as benzopyrazines, containing a benzene ring and a pyrazine ring. They have attracted considerable attention over the years due to their potential biological and pharmaceutical properties. A wide range of synthetic strategies is reported in this significant area of research. The present review showcases recent research advances in the synthesis of quinoxaline derivatives following environmentally benign approaches.
Collapse
|
4
|
The Highly Efficient Synthesis of 1,2-Disubstituted Benzimidazoles Using Microwave Irradiation. Molecules 2022; 27:molecules27051751. [PMID: 35268852 PMCID: PMC8911685 DOI: 10.3390/molecules27051751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/17/2022] [Accepted: 03/05/2022] [Indexed: 11/17/2022] Open
Abstract
The benzimidazole ring of the heterocyclic pharmacophores is one of the most widespread and studied systems in nature. The benzimidazole derivative synthesis study is a crucial point for the development of a clinically available benzimidazole-based drug. Here, we report a simple microwave assisted method for the synthesis of 1,2-disubstituted benzimidazoles. The combination of the molar ratio of N-phenyl-o-phenylenediamine:benzaldehyde (1:1) using microwave irradiation and only 1% mol of Er(OTf)3 provides an efficient and environmental mild access to a diversity of benzimidazoles under solvent-free conditions. The proposed method allows for the obtainment of the desired products in a short time and with very high selectivity.
Collapse
|
5
|
Highly Efficient and Ambient-Temperature Synthesis of Benzimidazoles via Co(III)/Co(II)-Mediated Redox Catalysis. Catalysts 2022. [DOI: 10.3390/catal12010059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
An efficient method for ambient-temperature synthesis of a variety of 2-substituted and 1,2-disubstituted benzimidazoles from aldehyde and phenylenediamine substrates has been developed by utilizing Co(III)/Co(II)-mediated redox catalysis. The combination of only 1 mol% of Co(acac)2 and stoichiometric amount of hydrogen peroxide provides a fast, green, and mild access to a diversity of benzimidazoles under solvent-free conditions.
Collapse
|
6
|
Amini A, Fallah A, Sedaghat A, Gholami A, Cheng C, Gupta AR. Natural vs. Synthetic Phosphate as Efficient Heterogeneous Compounds for Synthesis of Quinoxalines. Int J Mol Sci 2021; 22:13665. [PMID: 34948460 PMCID: PMC8704691 DOI: 10.3390/ijms222413665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
Natural phosphate (NP) and synthetic fluorapatite phosphate (SFAP) were proposed as stable, inexpensive, readily available and recyclable catalysts for the condensation of 1,2-diamines with 1,2-dicarbonyls in methanol to afford quinoxaline at room temperature. NP provided as high as 92-99% yield for quinoxalines in short reaction times (i.e., 1-45 min), while SFAP created quinoxalines with 87-97% yield in 60-120 min. From the chemical analyses, X-ray fluoresecency, X-ray diffraction, energy dispersive X-ray and Fourier-transform infrared spectroscopy methods, two main phases (CaO, P2O5) appeared in NP together with other low content phases (SiO2, Fe2O3). Compared to other phases, apatite (CaO and P2O5 as Ca10(PO4)6) played a major role in the catalytic activity of NP. SFAP with similar Ca/P atomic ratio showed a relatively lower catalytic activity than NP for the condensation of 1,2-diamine with 1,2-dicarbonyl in methanol at ambient temperature. To investigate the recyclability of catalysts, the surface properties of NP and 6-recycled NP were investigated using scanning electron microscopy, energy dispersive X-ray and Brunauer-Emmett-Teller and Barrett-Joyner-Halenda methods. Some differences were observed in NP and 6-recycled NP's particle size, surface area, the volume and size of pores, and the content of elements; nevertheless, the use-reuse process did not noticeably change the catalytic property of NP.
Collapse
Affiliation(s)
- Abbas Amini
- Centre for Infrastructure of Engineering, Bld Z, Locked Bag 1797, Kingswood Campus, Western Sydney University, Penrith, NSW 2751, Australia
- Department of Mechanical Engineering, Australian College of Kuwait, Mishref, Safat 13015, Kuwait;
| | - Azadeh Fallah
- Department of Chemistry, Payame Noor University, Tehran 19395-4697, Iran;
| | - Ahmad Sedaghat
- Department of Mechanical Engineering, Australian College of Kuwait, Mishref, Safat 13015, Kuwait;
| | - Ahmad Gholami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Chun Cheng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China;
| | - Anju R. Gupta
- Department of Mechanical Engineering, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH 43606, USA;
| |
Collapse
|
7
|
Chellapandi T, Madhumitha G. Montmorillonite clay-based heterogenous catalyst for the synthesis of nitrogen heterocycle organic moieties: a review. Mol Divers 2021; 26:2311-2339. [PMID: 34705155 DOI: 10.1007/s11030-021-10322-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/18/2021] [Indexed: 11/26/2022]
Abstract
The use of montmorillonite clay as solid catalyst has grabbed much attention in the liquid phase reactions for organic synthesis. In recent years, there has been a lot of interest in organic synthesis using montmorillonite-based composites, especially in the synthesis of heterogeneous nanoparticles. Due to the robust and green nature of montmorillonite-based nanocatalysts, it has been widely used in N-heterocyclic reactions. In this review, we have concentrated on the reports pertaining the use of montmorillonite-based nanocatalyst in the synthesis of N-heterocycles, a category of organic compounds with excellent biological properties. This manuscript is arranged by the types of N-containing heterocycles synthesized using montmorillonite-based composite as catalysts including polycyclic spirooxindoles, heterocyclic propargylamine, indole-based heterocycles, quinoline and its derivatives, six-membered N-heterocyclic-based compounds and five-membered N-heterocyclic-based compounds. Special attention was given to the structural stability under experimental parameters of the montmorillonite-based composite with the incidence of metal leaching and reusability. Finally, along with recent developments, new findings in heterogeneous montmorillonite (Mt)-based catalysis have also been addressed.
Collapse
Affiliation(s)
- Thangapandi Chellapandi
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamilnadu, 632014, India
| | - Gunabalan Madhumitha
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamilnadu, 632014, India.
| |
Collapse
|
8
|
Mamedov VA, Zhukova NA. Recent Developments Towards Synthesis of (Het)arylbenzimidazoles. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0037-1610767] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractBenzimidazole is an important heterocycle that is widely researched and utilized by the pharmaceutical industry and is one of the five most commonly used five-membered aromatic heterocyclic compounds approved by the US Food and Drug Administration. In view of their wide-ranging bioactivities, systems containing benzimidazole as one of the moieties occupy a special place among other benzimidazole derivatives. Since 2010, many improved synthetic strategies have been developed for the construction of hetaryl- and arylbenzimidazole molecular scaffolds under environmentally benign conditions. This review emphasizes the recent trends and modifications frequently used in the synthesis of derivatives of benzimidazole such as the Phillips–Ladenburg and Weidenhagen reactions, as well as entirely new methods of synthesis, involving oxidative cyclization, cross-coupling, ring distortion strategy, and rearrangements carried out under environmentally benign conditions.1 Introduction2 From 1,2-Diaminobenzenes with Various One-Carbon Unit Suppliers2.1 Phillips–Ladenburg Reaction2.1.1 With (Het)arenecarboxylic Acids2.2.2 With (Het)arenecarboxylic Acid Derivatives2.2 Weidenhagen Reaction2.2.1 With (Het)arenecarbaldehydes or (Het)aryl Methyl Ketones2.2.2 With Primary Alcohols2.2.3 With Primary Alkylamines2.2.4 With 2-Methylazaarenes2.2.5 With Other One-Carbon Fragment Suppliers3 From 2-Haloacetanilides and Amines4 From Amidines5 From Tetrahydroquinazolines6 Mamedov Rearrangement7 Conclusions and Outlook
Collapse
|
9
|
Khatoon H, Abdulmalek E. Novel Synthetic Routes to Prepare Biologically Active Quinoxalines and Their Derivatives: A Synthetic Review for the Last Two Decades. Molecules 2021; 26:1055. [PMID: 33670436 PMCID: PMC7923122 DOI: 10.3390/molecules26041055] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022] Open
Abstract
Quinoxalines, a class of N-heterocyclic compounds, are important biological agents, and a significant amount of research activity has been directed towards this class. They have several prominent pharmacological effects like antifungal, antibacterial, antiviral, and antimicrobial. Quinoxaline derivatives have diverse therapeutic uses and have become the crucial component in drugs used to treat cancerous cells, AIDS, plant viruses, schizophrenia, certifying them a great future in medicinal chemistry. Due to the current pandemic situation caused by SARS-COVID 19, it has become essential to synthesize drugs to combat deadly pathogens (bacteria, fungi, viruses) for now and near future. Since quinoxalines is an essential moiety to treat infectious diseases, numerous synthetic routes have been developed by researchers, with a prime focus on green chemistry and cost-effective methods. This review paper highlights the various synthetic routes to prepare quinoxaline and its derivatives, covering the literature for the last two decades. A total of 31 schemes have been explained using the green chemistry approach, cost-effective methods, and quinoxaline derivatives' therapeutic uses.
Collapse
Affiliation(s)
- Hena Khatoon
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Emilia Abdulmalek
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
- Integrated Chemical BioPhysics Research, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
10
|
Basolites: A type of Metal Organic Frameworks highly efficient in the one-pot synthesis of quinoxalines from α-hydroxy ketones under aerobic conditions. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
Nitro functionalized chromium terephthalate metal-organic framework as multifunctional solid acid for the synthesis of benzimidazoles. J Colloid Interface Sci 2020; 560:885-893. [DOI: 10.1016/j.jcis.2019.10.093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/13/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022]
|
12
|
Hashemi SA, Mohammadizadeh MR. Catalyst‐Free Efficient Synthesis of Alkyl Acetates Bearing Arylsulfide and Quinoxaline Moieties and Stereoselective Synthesis of Dialkyl 2‐Amino‐3‐thiomalates at Room Temperature. ChemistrySelect 2019. [DOI: 10.1002/slct.201901287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
| | - Mohammad Reza Mohammadizadeh
- Department of ChemistryFaculty of SciencesPersian Gulf University Bushehr 75169 Iran
- Oil and Gas Research CenterPersian Gulf University Bushehr 75169 Iran
| |
Collapse
|
13
|
Kalhor M, Rezaee‐Baroonaghi F, Dadras A, Zarnegar Z. Synthesis of new TCH/Ni‐based nanocomposite supported on SBA‐15 and its catalytic application for preparation of benzimidazole and perimidine derivatives. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4784] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Mehdi Kalhor
- Department of Organic ChemistryPayame Noor University Tehran 19395‐4697 Iran
| | | | - Akbar Dadras
- Department of Organic ChemistryPayame Noor University Tehran 19395‐4697 Iran
| | - Zohre Zarnegar
- Department of Organic ChemistryPayame Noor University Tehran 19395‐4697 Iran
| |
Collapse
|
14
|
Banerjee B. Ultrasound and Nano-Catalysts: An Ideal and Sustainable Combination to Carry out Diverse Organic Transformations. ChemistrySelect 2019. [DOI: 10.1002/slct.201803081] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Bubun Banerjee
- Department of Chemistry; Indus International University; V.P.O. Bathu, Distt. Una Himachal Pradesh- 174301 India
| |
Collapse
|
15
|
Kaushal T, Srivastava G, Sharma A, Singh Negi A. An insight into medicinal chemistry of anticancer quinoxalines. Bioorg Med Chem 2018; 27:16-35. [PMID: 30502116 DOI: 10.1016/j.bmc.2018.11.021] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/06/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
Abstract
Quinoxalines are benzopyrazines containing benzene and pyrazine rings fused together. In the recent past, quinoxalines have attracted Medicinal Chemists considerably for their syntheses and chemistry due to their distinct pharmacological activities. Diverse synthetic protocols have been developed via multicomponent reactions, single pot synthesis and combinatorial approach using efficient catalysts, reagents, and nano-composites etc. Further, the versatility of the quinoxaline core and its reasonable chemical simplicity devise it extremely promising source of bioactive compounds. Therefore, a wide variety of bioactive quinoxalines has been realised as antitumour, antifungal, anti-inflammatory, antimicrobial, and antiviral agents. Already, a few of them are clinical drugs while many more are under various phases of clinical trials. Present review focuses on chemistry and pharmacology (both efficacy and safety) of quinoxalines and also provides some insight in to their structure-activity relationship.
Collapse
Affiliation(s)
- Tanu Kaushal
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow 226 015, UP, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Gaurava Srivastava
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow 226 015, UP, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Ashok Sharma
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow 226 015, UP, India
| | - Arvind Singh Negi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow 226 015, UP, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India.
| |
Collapse
|
16
|
Mamedov VA, Khafizova EA, Syakaev VV, Gubaidullin AT, Samigullina AI, Algaeva NE, Latypov SK. The rearrangement of 1H,1′H-spiro[quinoline-4,2′-quinoxaline]-2,3′ (3H,4′H)-diones – a new and efficient method for the synthesis of 4-(benzimidazol-2-yl)quinolin-2(1H)-ones. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.09.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
De S, Sarkar B, Jadhav GR, Ramasamy SK, Banerjee S, Moorthy A, Paira P, K AKS. Experimental and Theoretical Study on the Biomolecular Interaction of Novel Acenaphtho Quinoxaline and Dipyridophenazine Analogues. ChemistrySelect 2018. [DOI: 10.1002/slct.201801448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sourav De
- Department of Chemistry; School of Advanced Sciences; Vellore Institute of Technology; Vellore- 632014, Tamil Nadu India
| | - Bidisha Sarkar
- Department of Chemistry; School of Advanced Sciences; Vellore Institute of Technology; Vellore- 632014, Tamil Nadu India
| | - Gajanan Raosaheb Jadhav
- Department of Chemistry; School of Advanced Sciences; Vellore Institute of Technology; Vellore- 632014, Tamil Nadu India
| | - Selva Kumar Ramasamy
- Department of Chemistry; School of Advanced Sciences; Vellore Institute of Technology; Vellore- 632014, Tamil Nadu India
| | - Subhasis Banerjee
- Department of Pharmaceutical Chemistry; Gupta College of Technological Sciences; Asansol- 713301, West Bengal. India
| | - Anbalagan Moorthy
- School of Bioscience & Technology; Vellore Institute of Technology; Vellore 632014, Tamil Nadu India
| | - Priyankar Paira
- Department of Chemistry; School of Advanced Sciences; Vellore Institute of Technology; Vellore- 632014, Tamil Nadu India
| | - Ashok Kumar S K
- Department of Chemistry; School of Advanced Sciences; Vellore Institute of Technology; Vellore- 632014, Tamil Nadu India
| |
Collapse
|
18
|
Balinge KR, Datir SK, Khajone VB, Bhansali KJ, Khiratkar AG, Bhagat PR. Iron(III)–salen complex on a polymer scaffold as heterogeneous catalyst for synthesis of benzimidazoles. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3595-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Chaturvedi AK, Verma AK, Thakur JP, Roy S, Bhushan Tripathi S, Kumar BS, Khwaja S, Sachan NK, Sharma A, Chanda D, Shanker K, Saikia D, Negi AS. A novel synthesis of 2-arylbenzimidazoles in molecular sieves-MeOH system and their antitubercular activity. Bioorg Med Chem 2018; 26:4551-4559. [PMID: 30097361 DOI: 10.1016/j.bmc.2018.07.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/27/2018] [Accepted: 07/28/2018] [Indexed: 12/18/2022]
Abstract
Arylbenzimidazoles have been synthesized as antimycobacterial agents. An efficient synthesis has been developed for 2-arylbenzimidazoles from o-phenylenediamines and aromatic aldehydes in molecular sieves-methanol system. The methodology is straightforward to get 2-arylbenzimidazoles (3a-3z) in excellent yields with high chemoselectivity over 2-aryl-1-benzylbenzimidazoles (4a-4z). All these benzimidazole analogues were evaluated against M. tuberculosis in BACTEC radiometric assay. The compounds 4y and 4z exhibited potential antitubercular activity against M. tuberculosis H37RV, MIC at 16 µM and 24 µM respectively. The best compound of the series i.e. compound 4y was well tolerated by Swiss-albino mice in acute oral toxicity. Compound 4y possessing a diarylbenzimidazole core, can further be optimized for better activity.
Collapse
Affiliation(s)
- Amit K Chaturvedi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow 226 015, U.P., India
| | - Amit Kumar Verma
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow 226 015, U.P., India
| | - Jay Prakash Thakur
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow 226 015, U.P., India
| | - Sudeep Roy
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology Technická 12, 61200 Brno, Czech Republic
| | - Shashi Bhushan Tripathi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow 226 015, U.P., India
| | - Balagani Sathish Kumar
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow 226 015, U.P., India
| | - Sadiya Khwaja
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow 226 015, U.P., India
| | - Naresh K Sachan
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow 226 015, U.P., India
| | - Ashok Sharma
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow 226 015, U.P., India
| | - Debabrata Chanda
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow 226 015, U.P., India
| | - Karuna Shanker
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow 226 015, U.P., India
| | - Dharmendra Saikia
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow 226 015, U.P., India.
| | - Arvind S Negi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow 226 015, U.P., India.
| |
Collapse
|
20
|
Harsha KB, Rangappa S, Preetham HD, Swaroop TR, Gilandoust M, Rakesh KS, Rangappa KS. An Easy and Efficient Method for the Synthesis of Quinoxalines Using Recyclable and Heterogeneous Nanomagnetic‐Supported Acid Catalyst under Solvent‐Free Condition. ChemistrySelect 2018. [DOI: 10.1002/slct.201800053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kachigere B. Harsha
- Department of chemistrySarada Vilas post Graduation CentreUniversity of mysore Mysuru - 570004, Karnataka India
| | - Shobith Rangappa
- Adichunchangiri Institute for Molecular Medicine Nagamangala - 571448, Karnataka India
| | | | | | - Maryam Gilandoust
- DOS in ChemistryUniversity of Mysore, Manasagangothri Mysuru - 570006, Karnataka India
| | - Kodgahally S. Rakesh
- DOS in ChemistryUniversity of Mysore, Manasagangothri Mysuru - 570006, Karnataka India
| | | |
Collapse
|
21
|
Hechelski M, Ghinet A, Louvel B, Dufrénoy P, Rigo B, Daïch A, Waterlot C. From Conventional Lewis Acids to Heterogeneous Montmorillonite K10: Eco-Friendly Plant-Based Catalysts Used as Green Lewis Acids. CHEMSUSCHEM 2018; 11:1249-1277. [PMID: 29405590 DOI: 10.1002/cssc.201702435] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/04/2018] [Indexed: 06/07/2023]
Abstract
The concept of green chemistry began in the USA in the 1990s. Since the publication of the 12 principles of this concept, many reactions in organic chemistry have been developed, and chemical products have been synthesized under environmentally friendly conditions. Lewis acid mediated synthetic transformations are by far the most numerous and best studied. However, the use of certain Lewis acids may cause risks to environmental and human health. This Review discusses the evolution of Lewis acid catalyzed reactions from a homogeneous liquid phase to the solid phase to yield the expected organic molecules under green, safe conditions. In particular, recent developments and applications of biosourced catalysts from plants are highlighted.
Collapse
Affiliation(s)
- Marie Hechelski
- Laboratoire Génie Civil et géoEnvironnement (LGCgE), Yncrea Hauts-de-France, 48 boulevard Vauban, 59046, Lille Cedex, France
| | - Alina Ghinet
- Faculté de médecine-Pôle recherche, Inserm U995, LIRIC, Université de Lille, CHU de Lille, Place Verdun, 59045, Lille Cedex, France
- Laboratoire de chimie durable et santé, Yncrea Hauts-de-France, 13 rue de Toul, 59046, Lille Cedex, France
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, Bd. Carol I nr. 11, 700506, Iasi, Romania
| | - Brice Louvel
- Laboratoire Génie Civil et géoEnvironnement (LGCgE), Yncrea Hauts-de-France, 48 boulevard Vauban, 59046, Lille Cedex, France
| | - Pierrick Dufrénoy
- Faculté de médecine-Pôle recherche, Inserm U995, LIRIC, Université de Lille, CHU de Lille, Place Verdun, 59045, Lille Cedex, France
- Laboratoire de chimie durable et santé, Yncrea Hauts-de-France, 13 rue de Toul, 59046, Lille Cedex, France
- Normandie Univ., UNILEHAVRE, FR 3038 CNRS, URCOM, 76600, Le Havre, BP: 1123, EA 3221, INC3M CNRS-FR 3038, UFR ST, 25 rue Philipe Lebon, F-, 76063, Le Havre Cedex, France
| | - Benoît Rigo
- Faculté de médecine-Pôle recherche, Inserm U995, LIRIC, Université de Lille, CHU de Lille, Place Verdun, 59045, Lille Cedex, France
- Laboratoire de chimie durable et santé, Yncrea Hauts-de-France, 13 rue de Toul, 59046, Lille Cedex, France
| | - Adam Daïch
- Normandie Univ., UNILEHAVRE, FR 3038 CNRS, URCOM, 76600, Le Havre, BP: 1123, EA 3221, INC3M CNRS-FR 3038, UFR ST, 25 rue Philipe Lebon, F-, 76063, Le Havre Cedex, France
| | - Christophe Waterlot
- Laboratoire Génie Civil et géoEnvironnement (LGCgE), Yncrea Hauts-de-France, 48 boulevard Vauban, 59046, Lille Cedex, France
| |
Collapse
|
22
|
Sutapin C, Chirachanchai S. Cyclization of aromatic aldehydes and phenylenediamines under reduced pressure: A convenient, environmentally friendly, and simple procedure for benzimidazole precursors. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2017.1390684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Choltirosn Sutapin
- Nanoscience and Technology (International Program), Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Suwabun Chirachanchai
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
23
|
Facile access to polymer supported zinc–salen complex: highly efficient heterogeneous catalyst for synthesizing hydantoins, thiohydantoins and Schiff bases in aqueous medium. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-3215-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Sajjadifar S, Arzehgar Z, Ghayuri A. Zn3(BTC)2as a Highly Efficient Reusable Catalyst for the Synthesis of 2-Aryl-1H-Benzimidazole. J CHIN CHEM SOC-TAIP 2017. [DOI: 10.1002/jccs.201700266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Azadeh Ghayuri
- Department of Chemistry; Payame Noor University; Ilam Iran
| |
Collapse
|
25
|
Narang U, Yadav KK, Bhattacharya S, Chauhan SMS. Cobalt(II) Phthalocyanine Catalyzed One-Pot Synthesis of 2-Substituted Benzimidazoles, Benzothiazoles and Benzoxazoles from Substituted Benzyl Alcohols. ChemistrySelect 2017. [DOI: 10.1002/slct.201701559] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Uma Narang
- Department of Chemistry; University of Delhi; Delhi- 110007
| | | | | | | |
Collapse
|
26
|
One-pot aqueous-phase synthesis of quinoxalines through oxidative cyclization of deoxybenzoins with 1,2-phenylenediamines catalyzed by a zwtterionic Cu(II)/calix[4]arene complex. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.12.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
In water–ultrasound-promoted synthesis of tetraketones and 2-substituted-1H-benzimidazoles catalyzed by BiOCl nanoparticles. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-2924-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
|
29
|
Hamid O, Chari MA, Van Nguyen C, Chen JE, Alshehri SM, Yanmaz E, Hossain SA, Yamauchi Y, Wu KCW. ZnO-loaded mesoporous silica (KIT-6) as an efficient solid catalyst for production of various substituted quinoxalines. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2016.10.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
30
|
Anchoring of Cu(II) onto surface of porous metal-organic framework through post-synthesis modification for the synthesis of benzimidazoles and benzothiazoles. J SOLID STATE CHEM 2016. [DOI: 10.1016/j.jssc.2015.11.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Andriamitantsoa RS, Wang J, Dong W, Gao H, Wang G. SO3H-functionalized metal organic frameworks: an efficient heterogeneous catalyst for the synthesis of quinoxaline and derivatives. RSC Adv 2016. [DOI: 10.1039/c6ra02575g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The high dispersed –SO3H groups in the framework of MIL-101-Cr–NH–RSO3H ensure high catalytic activity for the condensation of 1,2-diamines with benzil. The catalyst exhibits good stability, general applicability and excellent recycling performance.
Collapse
Affiliation(s)
- Radoelizo S. Andriamitantsoa
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| | - Jingjing Wang
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| | - Wenjun Dong
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| | - Hongyi Gao
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| | - Ge Wang
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction
- School of Materials Science and Engineering
- University of Science and Technology Beijing
- Beijing 100083
- PR China
| |
Collapse
|
32
|
Harsha KB, Rangappa KS. One-step approach for the synthesis of functionalized quinoxalines mediated by T3P®–DMSO or T3P® via a tandem oxidation–condensation or condensation reaction. RSC Adv 2016. [DOI: 10.1039/c6ra03078e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An easy and efficient (T3P®)–DMSO or T3P® mediated oxidation–condensation or condensation reaction for the synthesis of quinoxalines from the different arrays of condensing partners and ortho-phenylene diamines (o-PDs) in one step has been reported.
Collapse
|
33
|
Baghbanian SM. Propylsulfonic acid functionalized nanozeolite clinoptilolite as heterogeneous catalyst for the synthesis of quinoxaline derivatives. CHINESE CHEM LETT 2015. [DOI: 10.1016/j.cclet.2015.04.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Cardozo VA, Sánchez-Obregón R, Salgado-Zamora H, Jiménez-Juárez R. Bentonite clay: an efficient catalyst for the synthesis of 2-substituted benzimidazoles. MONATSHEFTE FUR CHEMIE 2015. [DOI: 10.1007/s00706-015-1423-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Ghosh P, Subba R. MgCl2·6H2O catalyzed highly efficient synthesis of 2-substituted-1H-benzimidazoles. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
36
|
Mulik AG, Chandam DR, Patil DR, Patil PP, Mulik GN, Salunkhe ST, Deshmukh MB. Protic ionic liquids: a lucid, rational tool for synthesis of phthalazinediones, quinoxalines and benzopyrans. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-015-2014-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Synthesis of 2-Substituted Benzimidazoles Using 25 % Co/Ce-ZrO2 as a Heterogeneous and Nanocatalyst. Catal Letters 2014. [DOI: 10.1007/s10562-014-1372-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Khaksar S, Radpeyma H. Pentafluorophenylammonium triflate: A highly efficient catalyst for the synthesis of quinoxaline derivatives in water. CR CHIM 2014. [DOI: 10.1016/j.crci.2013.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Copper-Catalyzed Domino Synthesis of 2-Imino-1H-imidazol-5(2H)-ones and Quinoxalines Involving CC Bond Cleavage with a 1,3-Dicarbonyl Unit as a Leaving Group. Chemistry 2014; 20:11776-82. [DOI: 10.1002/chem.201403001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Indexed: 01/06/2023]
|
40
|
Suresh D, Kanagaraj K, Pitchumani K. Microwave promoted one-pot synthesis of 2-aryl substituted 1,3,4-oxadiazoles and 1,2,4-oxadiazole derivatives using Al3+-K10 clay as a heterogeneous catalyst. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
|
42
|
Pramanik A, Roy R, Khan S, Ghatak A, Bhar S. Eco-friendly synthesis of 2-aryl-1-arylmethyl-1H-benzimidazoles using alumina-sulfuric acid as a heterogeneous reusable catalyst. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.01.125] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Jeganathan M, Dhakshinamoorthy A, Pitchumani K. One-pot synthesis of 2-substituted quinoxalines using K10-montmorillonite as heterogeneous catalyst. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.01.087] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Subramaniapillai SG, Ganesan A. ZnCl2 promoted efficient, one-pot synthesis of 3-arylmethyl and diarylmethyl indoles. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2013.11.115] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Kumar BS, Dhakshinamoorthy A, Pitchumani K. K10 montmorillonite clays as environmentally benign catalysts for organic reactions. Catal Sci Technol 2014. [DOI: 10.1039/c4cy00112e] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This perspective summarizes the catalytic activity of K10 montmorillonite as a multifunctional catalyst for organic reactions.
Collapse
Affiliation(s)
| | - Amarajothi Dhakshinamoorthy
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625021, India
- Centre for Green Chemistry Processes
- School of Chemistry
| | - Kasi Pitchumani
- School of Chemistry
- Madurai Kamaraj University
- Madurai 625021, India
- Centre for Green Chemistry Processes
- School of Chemistry
| |
Collapse
|
46
|
Catalytic activity of manganese oxide supported on alumina in the synthesis of quinoxalines. Front Chem Sci Eng 2013. [DOI: 10.1007/s11705-013-1360-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
47
|
Wang XX, Tao T, Geng J, Ma BB, Peng YX, Huang W. Dipyrido[3,2-a:2′,3′-c]phenazine-Based Donor-Acceptor Aromatic Heterocyclic Compounds with Thienyl and Triphenylamino Chromophores at the 2,7- and/or 10,13-Positions. Chem Asian J 2013; 9:514-25. [DOI: 10.1002/asia.201301284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Indexed: 01/15/2023]
|
48
|
Suresh D, Dhakshinamoorthy A, Pitchumani K. A green route for the synthesis of 2-substituted benzoxazole derivatives catalyzed by Al3+-exchanged K10 clay. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.09.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Suresh D, Dhakshinamoorthy A, Kanagaraj K, Pitchumani K. Synthesis of 2-substituted 3-ethyl-3H-imidazo[4,5-b]pyridines catalyzed by Al3+-exchanged K10 clay as solid acids. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.09.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
50
|
Venkateswarlu Y, Kumar SR, Leelavathi P. Facile and efficient one-pot synthesis of benzimidazoles using lanthanum chloride. Org Med Chem Lett 2013; 3:7. [PMID: 23919542 PMCID: PMC3765254 DOI: 10.1186/2191-2858-3-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/15/2013] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND We report the synthesis of benzimidazoles using lanthanum chloride as an efficient catalyst. One-pot synthesis of 2-substituted benzimidazole derivatives from o-phenylenediamine and a variety of aldehydes were developed under mild reaction conditions. RESULTS We have examined the effect of different solvents using the same reaction conditions. The yield of the product varied with the nature of the solvents, and better conversion and easy isolation of products were found with acetonitrile. In a similar manner, the reaction with o-phenylenediamine and 3,4,5-trimethoxybenzaldehyde was carried out without any solvents. The observation shows that the reaction was not brought into completion, even after starting for a period of 9 h, and the reaction mixture showed a number of spots in thin-layer chromatography. CONCLUSIONS In conclusion, lanthanum chloride has been employed as a novel and efficient catalyst for the synthesis of benzimidazoles in good yields from o-phenylenediamine and a wide variety of aldehydes. All of the reactions were carried out in the presence of lanthanum chloride (10 mol%) in acetonitrile at room temperature.
Collapse
Affiliation(s)
- Yekkirala Venkateswarlu
- Department of Chemistry, Osmania University College for Women, Koti, Hyderabad 500095, India
| | - Sudhagani Ramesh Kumar
- Department of Chemistry, Osmania University College for Women, Koti, Hyderabad 500095, India
| | - Panuganti Leelavathi
- Department of Chemistry, Osmania University College for Women, Koti, Hyderabad 500095, India
| |
Collapse
|