1
|
Loera-Garcia BV, Leyva-Ramos S, Cardoso-Ortiz J, Noriega S, Romo-Mancillas A, Baines KM, McOnei SL. An Alternative Method for the Selective Synthesis of Ortho-nitro Anilines Using Bismuth Nitrate Pentahydrate. Curr Org Synth 2025; 22:234-242. [PMID: 38415444 DOI: 10.2174/0115701794273947231206111750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Accepted: 10/23/2023] [Indexed: 02/29/2024]
Abstract
BACKGROUND Nitroaromatic compounds are important scaffolds used for the synthesis of a variety of compounds, such as explosives, herbicides, dyes, perfumes and pharmaceuticals. Bismuth nitrate pentahydrate is a widely used reagent in organic synthesis; however, its utility as a nitrating agent for anilines is underexplored. OBJECTIVE The aim of this work is to propose and find the proper reaction conditions of an alternative nitrating agent constituted by a mixture of bismuth nitrate / acetic anhydride in DCM with a series of substituted anilines under mild reflux. METHODS Several anilines having both activating and deactivating substituents in the ortho, meta and para positions were the substrate for the nitration reaction. Experimental conditions were performed in "one-pot" conditions before product purification. RESULTS Bi(NO3)3•5H2O demonstrated to be effective and somehow regioselective when it came to the nitration of anilines in the ortho position. Although other products were also identified under these conditions, in most cases, the ortho derivative was the major or even the only product obtained with moderate to high yields in the range of 50% - 96%. CONCLUSION Bi(NO3)3•5H2O is an efficient and safe nitrating agent since the use of concentrated and corrosive acids like sulfuric and nitric is avoided; furthermore, bismuth nitrate is low-priced and no special care nor equipment is required.
Collapse
Affiliation(s)
- Brenda V Loera-Garcia
- Facultad de Ciencias Químicas. Universidad Autónoma de San Luis Potosí. Av. Manuel Nava 6, Zona Universitaria. San Luis Potosí, San Luis Potosí 78210, México
| | - Socorro Leyva-Ramos
- Facultad de Ciencias Químicas. Universidad Autónoma de San Luis Potosí. Av. Manuel Nava 6, Zona Universitaria. San Luis Potosí, San Luis Potosí 78210, México
| | - Jaime Cardoso-Ortiz
- Unidad Académica de Ciencias Químicas. Universidad Autónoma de Zacatecas. Carretera Zacatecas-Guadalajara Km 6, Ejido la Escondida S/N. Zacatecas, Zacatecas, 98160, México
| | - Saul Noriega
- Unidad Académica de Ciencias Químicas. Universidad Autónoma de Zacatecas. Carretera Zacatecas-Guadalajara Km 6, Ejido la Escondida S/N. Zacatecas, Zacatecas, 98160, México
| | - Antonio Romo-Mancillas
- Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas S/N, Querétaro 76010, México
| | - Kim M Baines
- Department of Chemistry. University of Western Ontario, 1151 Richmont St., London, Ontario, N6A 5B7, Canada
| | - Sarah L McOnei
- Department of Chemistry. University of Western Ontario, 1151 Richmont St., London, Ontario, N6A 5B7, Canada
| |
Collapse
|
2
|
Monem A, Habibi D, Goudarzi H. A potential DES catalyst for the fast and green synthesis of benzochromenopyrimidines and pyranopyrimidines. Sci Rep 2024; 14:18924. [PMID: 39147849 PMCID: PMC11327281 DOI: 10.1038/s41598-024-69817-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024] Open
Abstract
A gentisic acid based-Deep Eutectic Solvent (MTPPBr/GA-DES) was synthesized by mixing one mole of methyl triphenylphosphonium bromide (MTPPBr) and one mole of gentisic acid (GA: 2,5-dihydroxy-benzoic acid) based on the eutectic point phase diagram. Then, it was characterized by FT-IR, NMR, densitometer, and TGA/DTA techniques and used as a potent and novel catalyst for the fast and green synthesis of: (i) Five new 2(a-e) and five known 2(f-j) benzo[6,7]chromeno[2,3-d]pyrimidines and (ii) One new (3a) and eleven known 3(b-l) pyrano[2,3-d]pyrimidines, in solvent-free conditions, short reaction times, and high yields. It is important to mention that for the synthesis of 2(a-j), there is only one reference which states that the reaction times are extremely long (720-2400 min), while these times are reduced to approximately 35-50 min in our proposed strategy, indicatinging that the rate of reactions will be 20-48 times faster, which is the clear and most obvious advantage of our approach.
Collapse
Affiliation(s)
- Arezo Monem
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Davood Habibi
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran.
| | - Hadis Goudarzi
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| |
Collapse
|
3
|
Bershawy R, Hafez HS, El-Sakka SS, Hammad A, Soliman MH. The anticancer and anti-inflammatory activity screening of pyridazinone-based analogs against human epidermoid skin cancer with detailed mechanistic analyses. J Biomol Struct Dyn 2023; 42:12885-12899. [PMID: 37916672 DOI: 10.1080/07391102.2023.2273985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/07/2023] [Indexed: 11/03/2023]
Abstract
3(2H)-Pyridazinone derivatives based on 4-biphenyl, naphtha-2-yl, pyridine, or piperidine moiety were synthesized and characterized using I-R and 1HNMR spectra. The activity and cytotoxicity of some synthesized compounds on the skin epidermoid cancer cell proliferation and progression were investigated. The pyridazine isomer with pyridine revealed a significant decrease in the level of nitric oxide p < 0.01 than the activity of caffeine phenecyl ester. The activity of the three active isomers recorded significant activity for their total antioxidant content that triggers their ability for the scavenging the oxygen free radicals significantly p < 0.01. Moreover, revealing the pharmaceutical activity of the isomers as anti-inflammatory agents, IL-6, IL10, and IL12 have been decreased by variable significant values. Additionally, the active isomers revealed variable actions on the skin cancer cell to induce apoptosis using annexin V-FITC/PI. Pyridine was the highest isomer to induce late apoptosis and necrosis for the skin cancer cells against the use of cisplatin. Importantly, Molecular modeling experiments including docking and dynamic simulations were done for the most active 3 analogs to explore the ligand binding and stability leading to exploring the structure-activity relationship with biological target PARP1 which showed a good binding propensity to pyridazine binding site which supports the in vitro data. In conclusion, the pyridazine moieties with piperdine, naphthayl, and pyridine have pharmacological activities against skin cancer epidermoid by triggering action in inhibition of the proliferation and progression with an up-regulated apoptotic mechanism that evades the emergence of cisplatin resistance among different cancer cells.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rana Bershawy
- Department of Chemistry, Faculty of Science, Suez University, Suez, Egypt
| | - Hani S Hafez
- Department of Zoology, Faculty of Science, Suez University, Suez, Egypt
| | - Sahar S El-Sakka
- Department of Chemistry, Faculty of Science, Suez University, Suez, Egypt
| | - Ali Hammad
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohammed H Soliman
- Department of Chemistry, Faculty of Science, Suez University, Suez, Egypt
| |
Collapse
|
4
|
Bansal R, Butcher RJ, Gupta SK. Synthesis, crystal structure, Hirshfeld surface analysis, DFT and NBO study of ethyl 1-(4-fluoro-phen-yl)-4-[(4-fluoro-phen-yl)amino]-2,6-diphenyl-1,2,5,6-tetra-hydro-pyridine-3-carboxyl-ate. Acta Crystallogr E Crystallogr Commun 2023; 79:877-882. [PMID: 37817948 PMCID: PMC10561203 DOI: 10.1107/s205698902300748x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/26/2023] [Indexed: 10/12/2023]
Abstract
The title com-pound, C32H28F2N2O2, a highly functionalized tetra-hydro-pyridine, was synthesized by a one-pot multi-com-ponent reaction of 4-fluoro-aniline, ethyl aceto-acetate and benzaldehyde at room temperature using sodium lauryl sulfate as a catalyst. The com-pound crystallizes with two mol-ecules in the asymmetric unit. The tetra-hydro-pyridine ring adopts a distorted boat conformation in both mol-ecules and the dihedral angles between the planes of the fluoro-substituted rings are 77.1 (6) and 77.3 (6)°. The amino group and carbonyl O atom are involved in an intra-molecular N-H⋯O hydrogen bond, thereby generating an S(6) ring motif. In the crystal, mol-ecules are linked by C-H⋯F hydrogen bonds forming a three-dimensional network and C-H⋯π inter-actions. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (47.9%), C⋯H/H⋯C (30.7%) and F⋯H/H⋯F (12.4%) contacts. The optimized structure calculated using density functional theory (DFT) at the B3LYP/6-311+G(2d,p) level is compared with the experimentally determined molecular structure in the solid state. The HOMO-LUMO behaviour was used to determine the energy gap and the Natural Bond Orbital (NBO) analysis was done to study donor-acceptor interconnections.
Collapse
Affiliation(s)
- Ravi Bansal
- School of Studies in Chemistry, Jiwaji University, Gwalior 474011, India
| | - Ray J. Butcher
- Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
| | - Sushil K. Gupta
- School of Studies in Chemistry, Jiwaji University, Gwalior 474011, India
| |
Collapse
|
5
|
Goudarzi H, Habibi D, Monem A. Application of a novel deep eutectic solvent as a capable and new catalyst for the synthesis of tetrahydropyridines and 1,3-thiazolidin-4-ones. Sci Rep 2023; 13:5804. [PMID: 37037852 PMCID: PMC10086034 DOI: 10.1038/s41598-023-32882-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/04/2023] [Indexed: 04/12/2023] Open
Abstract
A novel deep eutectic solvent (ETPP-Br/THF-TCA-DES) was prepared by a mixture of ethyl triphenylphosphonium bromide (ETPP-Br) and tetrahydrofuran-2,3,4,5-tetra-carboxylic acid (THF-TCA, mole ratio 7:3), characterized by FT-IR, TGA/DTA, densitometer, eutectic point, and 1H NMR techniques and used as a capable and new catalyst for the synthesis of two sets of compounds: (1) the four new [a(1-4)] and the eleven [a(5-15)] known alkyl 1,2,6-trisubstituted-4-[(hetero)arylamino]-1,2,5,6-tetrahydropyridine-3-carboxylates and (2) the two new [b(1-2)] and the eight [b(3-10)] known 1,3-thiazolidin-4-ones in DES with short reaction time, high yields, and easy recycling and separation of the DES catalyst. There is a nice consistency between the proposed structure of the DES compound, the integration values of the 1H NMR peaks and the ratio of ETPP-Br to THF-TCA obtained from the eutectic point phase diagram. Also, the decrease in splitting patterns of the peaks in DES, compared to the two starting materials can be the good evidence of the hydrogen bond formation between the two components.
Collapse
Affiliation(s)
- Hadis Goudarzi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Davood Habibi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran.
| | - Arezo Monem
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
6
|
Diastereo- and Enantioselective Synthesis of Highly Functionalized Tetrahydropyridines by Recyclable Novel Bifunctional C2-Symmetric Ionic Liquid–Supported (S)-Proline Organocatalyst. Catalysts 2023. [DOI: 10.3390/catal13010209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
An efficient, novel bifunctional C2-symmetric ionic liquid–supported (S)-proline organocatalyst 7 was developed for a one-pot, five-component reaction involving β-keto esters 8, aryl aldehydes 9, and aryl amines 10, affording highly functionalized tetrahydropyridines 11a–o by simultaneous generation of fives bonds and two stereogenic centers with extraordinary diastereo- and enantioselectivities (up to >99:1 dr, 95:5 er) in isopropanol with high yields (up to 92%). This protocol provides quick access to diverse enantio-enriched, highly functionalized diastereo- and enantioselective tetrahydropyridines in a green medium without any column chromatographic purification. The catalyst was recycled five times without significant loss of its catalytic activity.
Collapse
|
7
|
Raya I, Solanki R, Rahi Alhachami F, Turki Jalil A, Fakri Mustafa Y. Copper (II) Complex Immobilized on Magnetic Nanoparticles Functionalized with Imine/Thio Ligand (Fe 3O 4@SiO 2-Imine/Thio-Cu(II)): A Novel, Efficient and Reusable Nanomagnetic Catalysts for the Synthesis of 2,4,6-Triaryl Pyridines. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2022.2164015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Indah Raya
- Department of Chemistry, Faculty of Mathematics and Natural Science, Hasanuddin University, Makassar, Indonesia
| | - Reena Solanki
- Department of Chemistry, Dr. A.P.J. Abdul Kalam University, Indore, India
| | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
8
|
Gadge DD, Kulkarni PS. 5‐Sulfosalicylic
Acid an Organocatalyst for the Synthesis of Highly Functionalized Piperidines through the Multicomponent Reaction. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dhananjay D. Gadge
- Department of Chemistry PDEA’s Annasaheb Waghire College, Otur Pune Maharashtra India
- Department of Chemistry PDEA’s Baburaoji Gholap College, Sangvi Pune Maharashtra India
| | - Pramod S. Kulkarni
- Department of Chemistry Hutatma Rajguru Mahavidyalaya Rajgurunagar Pune Maharashtra India
| |
Collapse
|
9
|
Dhameliya TM, Nagar PR, Bhakhar KA, Jivani HR, Shah BJ, Patel KM, Patel VS, Soni AH, Joshi LP, Gajjar ND. Recent advancements in applications of ionic liquids in synthetic construction of heterocyclic scaffolds: A spotlight. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118329] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Enamines and their variants as intermediates for synthesis of aza-heterocycles with applications in MCRs. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Neto BAD, Rocha RO, Rodrigues MO. Catalytic Approaches to Multicomponent Reactions: A Critical Review and Perspectives on the Roles of Catalysis. Molecules 2021; 27:132. [PMID: 35011363 PMCID: PMC8746711 DOI: 10.3390/molecules27010132] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 01/17/2023] Open
Abstract
In this review, we comprehensively describe catalyzed multicomponent reactions (MCRs) and the multiple roles of catalysis combined with key parameters to perform these transformations. Besides improving yields and shortening reaction times, catalysis is vital to achieving greener protocols and to furthering the MCR field of research. Considering that MCRs typically have two or more possible reaction pathways to explain the transformation, catalysis is essential for selecting a reaction route and avoiding byproduct formation. Key parameters, such as temperature, catalyst amounts and reagent quantities, were analyzed. Solvent effects, which are likely the most neglected topic in MCRs, as well as their combined roles with catalysis, are critically discussed. Stereocontrolled MCRs, rarely observed without the presence of a catalytic system, are also presented and discussed in this review. Perspectives on the use of catalytic systems for improved and greener MCRs are finally presented.
Collapse
Affiliation(s)
- Brenno A. D. Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasilia 70910-900, Brazil; (R.O.R.); (M.O.R.)
| | - Rafael O. Rocha
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasilia 70910-900, Brazil; (R.O.R.); (M.O.R.)
| | - Marcelo O. Rodrigues
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasilia 70910-900, Brazil; (R.O.R.); (M.O.R.)
- School of Physics and Astronomy, Nottingham University, Nottingham NG72RD, UK
| |
Collapse
|
12
|
Vettukattil U, Govindan A, James K, Anilkumar A, Krishnapillai S. Efficient synthesis of piperidine derivatives using dendrimer based catalytical pockets. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Avudaiappan Govindan
- Department of Applied Chemistry Cochin University of Science and Technology Cochin India
| | - Kiran James
- Department of Applied Chemistry Cochin University of Science and Technology Cochin India
| | - Ajay Anilkumar
- Department of Applied Chemistry Cochin University of Science and Technology Cochin India
| | | |
Collapse
|
13
|
Moosavi-Zare AR, Goudarziafshar H, Delkhosh MA, Jalilian Z. Nano-Mn-[4-Benzyloxyphenyl-salicylaldimine-methylpyranopyrazole-carbonitrile]Cl2 as a New Schiff Base Complex and Catalyst for the Synthesis of Highly Substituted Tetrahydropyridines. ORG PREP PROCED INT 2021. [DOI: 10.1080/00304948.2021.1920302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Hamid Goudarziafshar
- Department of Chemical Engineering, Hamedan University of Technology, Hamedan, Iran
| | | | - Zahra Jalilian
- Department of Chemistry, Sayyed Jamaleddin Asadabadi University, Asadabad, Iran
| |
Collapse
|
14
|
Ghamari Kargar P, Bagherzade G. Robust, highly active, and stable supported Co(ii) nanoparticles on magnetic cellulose nanofiber-functionalized for the multi-component reactions of piperidines and alcohol oxidation. RSC Adv 2021; 11:23192-23206. [PMID: 35479769 PMCID: PMC9036309 DOI: 10.1039/d1ra00208b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/27/2021] [Indexed: 12/31/2022] Open
Abstract
The new recyclable cobalt three-core magnetic catalyst obtained by anchoring a Schiff base ligand sector and cellulose nanofiber slings on MNP (Fe3O4) was prepared and named as MNP@CNF@ATSM-Co(ii). Separately, MNPs and CNF have adsorbent properties of great interest. In this way, this catalyst was designed to synthesize piperidine derivatives under solvent-free conditions and alcohol oxidation reactions in EtOH as the solvent. It should be noted that this catalyst is environmentally safe and does not need an external base. This MNPs@CNF@ATSM-Co(ii) separable catalyst has been evaluated using various characterization techniques such as FT-IR, XRD, FE-SEM, EDX, EDS, ICP, TGA, DLS, HRTEM, and VSM. The catalyst was compatible with a variety of benzyl alcohols, benzaldehydes, and amines derivatives, and gave complimentary coupling products with sufficient interest for all of them. The synergistic performance of Co (trinuclear) in the catalyst was demonstrated and its different homologs such as MNPs, MNPs@CNF, MNPs@CNF@ATS-Co(ii), and MNPs@CNF@ATSM-Co(ii) were separately synthesized and applied to a model reaction, and then their catalytic activity was investigated. Also, the performance of these components for the oxidation reaction of alcohols was evaluated. The advantages of the current protocol include the use of a sustainable and safe low temperature, eco-friendly solvent no additive, and long-term stability and magnetic recyclability of the catalyst for at least five successive runs, thus following green chemistry principles. This protocol is a benign and environment-friendly method for oxidation and heterocycle synthesis. This powerful super-magnetic catalyst can use its three arms to advance the reactions, displaying its power for multi-component reactions and oxidation.
Collapse
Affiliation(s)
- Pouya Ghamari Kargar
- Department of Chemistry, Faculty of Sciences, University of Birjand Birjand 97175-615 Iran +98 56 32345192 +98 56 32345192
| | - Ghodsieh Bagherzade
- Department of Chemistry, Faculty of Sciences, University of Birjand Birjand 97175-615 Iran +98 56 32345192 +98 56 32345192
| |
Collapse
|
15
|
Mendes JA, Costa PRR, Yus M, Foubelo F, Buarque CD. N- tert-Butanesulfinyl imines in the asymmetric synthesis of nitrogen-containing heterocycles. Beilstein J Org Chem 2021; 17:1096-1140. [PMID: 34093879 PMCID: PMC8144919 DOI: 10.3762/bjoc.17.86] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023] Open
Abstract
The synthesis of nitrogen-containing heterocycles, including natural alkaloids and other compounds presenting different types of biological activities have proved to be successful employing chiral sulfinyl imines derived from tert-butanesulfinamide. These imines are versatile chiral auxiliaries and have been extensively used as eletrophiles in a wide range of reactions. The electron-withdrawing sulfinyl group facilitates the nucleophilic addition of organometallic compounds to the iminic carbon with high diastereoisomeric excess and the free amines obtained after an easy removal of the tert-butanesulfinyl group can be transformed into enantioenriched nitrogen-containing heterocycles. The goal of this review is to the highlight enantioselective syntheses of heterocycles involving the use of chiral N-tert-butanesulfinyl imines as reaction intermediates, including the synthesis of several natural products. The synthesis of nitrogen-containing heterocycles in which the nitrogen atom is not provided by the chiral imine will not be considered in this review. The sections are organized according to the size of the heterocycles. The present work will comprehensively cover the most pertinent contributions to this research area from 2012 to 2020. We regret in advance that some contributions are excluded in order to maintain a concise format.
Collapse
Affiliation(s)
- Joseane A Mendes
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro Puc-Rio, CEP 22435-900, Brazil
| | - Paulo R R Costa
- Laboratory of Bioorganic Chemistry, Institute of Research of Natural Products, Health Science Center, Federal University of Rio de Janeiro UFRJ, CEP 21941-590, Brazil
| | - Miguel Yus
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo.99, 03080 Alicante, Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99,03080 Alicante, Spain
- Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Francisco Foubelo
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo.99, 03080 Alicante, Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99,03080 Alicante, Spain
- Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Camilla D Buarque
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro Puc-Rio, CEP 22435-900, Brazil
| |
Collapse
|
16
|
Patel DB, Parmar JA, Patel SS, Naik UJ, Patel HD. Recent Advances in Ester Synthesis by Multi-Component Reactions (MCRs): A Review. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210111111805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The synthesis of ester-containing heterocyclic compounds via multicomponent
reaction is one of the preferable processes in synthetic organic chemistry and medicinal
chemistry. Compounds containing ester linkage have a wide range of biological applications
in the pharmaceutical field. Therefore, many methods have been developed for the synthesis
of these types of derivatives. However, some of them are carried out in the presence of toxic
solvents and catalysts, with lower yields, longer reaction times, low selectivities, and byproducts.
Thus, the development of new synthetic methods for ester synthesis is required in
medicinal chemistry. As we know, multicomponent reactions (MCRs) are a powerful tool for
the one-pot ester synthesis, so in this article, we have reviewed the recent developments in
ester synthesis. This work covers a selected explanation of methods via multicomponent reactions
to explore the methodological development in ester synthesis.
Collapse
Affiliation(s)
- Dhaval B. Patel
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Jagruti A. Parmar
- K.K Shah Jarodwala Maninagar Science College, Gujarat University, Ahmedabad, 380008, Gujarat, India
| | - Siddharth S. Patel
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Unnati J. Naik
- K.K Shah Jarodwala Maninagar Science College, Gujarat University, Ahmedabad, 380008, Gujarat, India
| | - Hitesh D. Patel
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| |
Collapse
|
17
|
Ghamari Kargar P, Bagherzade G, Eshghi H. Introduction of a trinuclear manganese(iii) catalyst on the surface of magnetic cellulose as an eco-benign, efficient and reusable novel heterogeneous catalyst for the multi-component synthesis of new derivatives of xanthene. RSC Adv 2021; 11:4339-4355. [PMID: 35424405 PMCID: PMC8694372 DOI: 10.1039/d0ra09420j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/21/2020] [Indexed: 01/02/2023] Open
Abstract
In this work, the new trinuclear manganese catalyst defined as Fe3O4@NFC@NNSM-Mn(iii) was successfully manufactured and fully characterized by different techniques, including FT-IR, XRD, TEM, SEM, EDX, VSM, and ICP analysis. There have been reports of the use of magnetic catalysts for the synthesis of xanthine derivatives. The critical potential interest in the present method include short reaction time, high yields, recyclability of the catalyst, easy workup, and the ability to sustain a variety of functional groups, which give economical as well as ecological rewards. Also, the synthesized catalyst was used as a recyclable trinuclear catalyst in alcohol oxidation reactions at 40 °C. The magnetic catalyst activity of Fe3O4@NFC@NNSM-Mn(iii) could be attributed to the synergistic effects of the catalyst Fe3O4@NFC@NNS-Mn(iii) with melamine. Employing a sustainable and safe low temperature, using an eco-friendly solvent, no need to use any additive, and long-term stability and magnetic recyclability of the catalyst for at least six successive runs are the advantages of the current protocol towards green chemistry. This protocol is a benign, environmentally friendly method for heterocycle synthesis.
Collapse
Affiliation(s)
- Pouya Ghamari Kargar
- Department of Chemistry, Faculty of Sciences, University of Birjand Birjand 97175-615 Iran +98 56 32345192 +98 56 32345192
| | - Ghodsieh Bagherzade
- Department of Chemistry, Faculty of Sciences, University of Birjand Birjand 97175-615 Iran +98 56 32345192 +98 56 32345192
| | - Hossein Eshghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
18
|
Nezami Z, Eshghi H. Nanomagnetic catalysis (Fe3O4@S–TiO2): a novel magnetically nano catalyst for the synthesis of new highly substituted tetrahydropyridine derivatives under solvent-free conditions. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02170-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Pengpeng L. Multicomponent Reaction for the Synthesis of 1,2,3,4,6-Pentasubstituted Piperidines Catalyzed by NIS. HETEROCYCLES 2021. [DOI: 10.3987/com-21-14479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Pratibha, Rajput JK. Autocombustion‐Promoted Synthesis of Lanthanum Iron Oxide: Application as Heterogeneous Catalyst for Synthesis of Piperidines, Substituted Amines and Light‐Assisted Degradations. ChemistrySelect 2020. [DOI: 10.1002/slct.202002656] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Pratibha
- Department of Chemistry Dr. B.R Ambedkar National Institute of Technology Jalandhar Punjab 144011 India
| | - Jaspreet K. Rajput
- Department of Chemistry Dr. B.R Ambedkar National Institute of Technology Jalandhar Punjab 144011 India
| |
Collapse
|
21
|
Moosavi-Zare AR, Afshar-Hezarkhani H. Design of 2-Carboxy-1-sulfopyridin-1-ium Chloride as an Efficient and Eco-friendly Catalyst for the One-pot Synthesis of Highly Functionalized Tetrahydropyridines. ORG PREP PROCED INT 2020. [DOI: 10.1080/00304948.2020.1787058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Yankin AN, Dmitriev MV. Nickel complexes as efficient catalysts in multicomponent synthesis of tetrahydropyridine derivatives. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1803357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Andrei N. Yankin
- Department of Physics and Engineering, ITMO University, St. Petersburg, Russia
| | - Maksim V. Dmitriev
- Departament of Organic Chemistry, Perm State National Research University, Perm, Russia
| |
Collapse
|
23
|
Wu L, Yan S, Wang W, Li Y. Multicomponent reaction for the synthesis of highly functionalized piperidine scaffolds catalyzed by TMSI. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04208-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Bari A, Iqbal A, Khan ZA, Shahzad SA, Yar M. Synthetic approaches toward piperidine related structures: A review. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1776878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ayesha Bari
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Ahsan Iqbal
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Zulfiqar Ali Khan
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Muhammad Yar
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| |
Collapse
|
25
|
Saadati-Moshtaghin HR, Maleki B, Tayebee R, Kahrobaei S, Abbasinohoji F. 6-methylguanamine-Supported CoFe 2O 4: An Efficient Catalyst for One-Pot Three-Component Synthesis of Isoxazol-5(4 H)-One Derivatives. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1754865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Behrooz Maleki
- Department of Chemistry, School of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Reza Tayebee
- Department of Chemistry, School of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Sepideh Kahrobaei
- Department of Chemistry, School of Science, Hakim Sabzevari University, Sabzevar, Iran
| | | |
Collapse
|
26
|
Singh S, Gupta A, Kapoor KK. Facile one-pot multicomponent synthesis of highly functionalized tetrahydropyridines using thiamine hydrochloride as an organocatalyst. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1731756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Sandeep Singh
- Department of Chemistry, University of Jammu, Jammu, India
| | - Annah Gupta
- Department of Chemistry, University of Jammu, Jammu, India
| | | |
Collapse
|
27
|
Zhang W, Hu Z, Yan S, He S, Li S. Bis(1,3-dimethylimidazolidinone) Hydrotribromide (DITB) Promoted Multicomponent Reaction for the Synthesis of Highly Functionalized Piperidines. HETEROCYCLES 2020. [DOI: 10.3987/com-20-14201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Brahmachari G, Mandal M. One‐pot multicomponent synthesis of a new series of curcumin‐derived 4
H
‐pyrans under ambient conditions. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of ChemistryVisva‐Bharati (a Central University) Santiniketan West Bengal 731 235 India
| | - Mullicka Mandal
- Laboratory of Natural Products & Organic Synthesis, Department of ChemistryVisva‐Bharati (a Central University) Santiniketan West Bengal 731 235 India
| |
Collapse
|
29
|
Basirat N, Sajadikhah SS, Zare A. Multi-component synthesis of piperidines and dihydropyrrol-2-one derivatives catalyzed by a dual-functional ionic liquid. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.1177/1747519819883881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
N,N,N’, N’-tetramethyl- N,N’-bis(sulfo)ethane-1,2-diaminium mesylate ([TMBSED][OMs]2) was employed for the synthesis of piperidines and dihydropyrrol-2-ones via one-pot multi-component reactions in simple and green processes. This pseudo five-component reaction of aromatic aldehydes, anilines and alkyl acetoacetates was carried out under reflux conditions in ethanol to afford substituted piperidines. Also, dihydropyrrol-2-one derivatives were synthesized by means of four-component reactions of various amines, dialkyl acetylenedicarboxylates and formaldehyde in ethanol at room temperature. The present approaches have several advantages such as good yields, easy work-ups, short reaction times, and utilize mild and clean reaction conditions.
Collapse
Affiliation(s)
- Narjes Basirat
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| | | | - Abdolkarim Zare
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| |
Collapse
|
30
|
Madhu Kumar Reddy K, Peddanna K, Varalakshmi M, Bakthavatchala Reddy N, Sravya G, Zyryanov GV, Suresh Reddy C. Ceric ammonium nitrate (CAN) catalyzed synthesis and α-glucosidase activity of some novel tetrahydropyridine phosphonate derivatives. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2018.1550641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - Kotha Peddanna
- Department of Bio-Chemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Mavallur Varalakshmi
- Department of Humanities and Sciences, Sri Venkateswara College of Engineering and Technology, Chittoor, Andhra Pradesh, India
| | - Nemallapudi Bakthavatchala Reddy
- Department of Chemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, Yekaterinburg, Russian Federation
| | - Gundala Sravya
- Department of Chemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, Yekaterinburg, Russian Federation
| | - Grigory V. Zyryanov
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, Yekaterinburg, Russian Federation
- Ural Division of the Russian Academy of Sciences, I. Ya. Postovskiy Institute of Organic Synthesis, Yekaterinburg, Russian Federation
| | - Cirandur Suresh Reddy
- Department of Chemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| |
Collapse
|
31
|
Brahmachari G, Nurjamal K. Ultrasound-assisted and trisodium citrate dihydrate-catalyzed green protocol for efficient and one-pot synthesis of substituted chromeno[3′,4′:5,6]pyrano[2,3-d]pyrimidines at ambient conditions. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Brahmachari G, Begam S. Ceric Ammonium Nitrate (CAN): An Efficient and Eco‐Friendly Catalyst for One‐Pot Synthesis of Diversely Functionalized Biscoumarins in Aqueous Medium under Ambient Conditions. ChemistrySelect 2019. [DOI: 10.1002/slct.201900961] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic SynthesisDepartment of ChemistryVisva-Bharati (a Central University), Santiniketan- 731 235 West Bengal India
| | - Sanchari Begam
- Laboratory of Natural Products & Organic SynthesisDepartment of ChemistryVisva-Bharati (a Central University), Santiniketan- 731 235 West Bengal India
| |
Collapse
|
33
|
Brahmachari G, Nurjamal K, Begam S, Mandal M, Nayek N, Karmakar I, Mandal B. Alum (KAl(SO4)2.12H2O) - An Eco-friendly and Versatile Acid-catalyst in Organic Transformations: A Recent Update. CURRENT GREEN CHEMISTRY 2019. [DOI: 10.2174/2213346106666190307160332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Potassium alum (KAl(SO4)2.12H2O), commonly known as ‘alum’, has recently drawn the attention of synthetic chemists as an efficient, safe and eco-friendly acid catalyst in implementing a large number of organic transformations, thereby generating interesting molecular frameworks. The present review article offers an overview of the potent catalytic applications of this commercially available and low-cost inorganic sulfate salt in organic reactions reported during the period of 2014 to 2018.
Collapse
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (Central University), Santiniketan-731 235, West Bengal, India
| | - Khondekar Nurjamal
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (Central University), Santiniketan-731 235, West Bengal, India
| | - Sanchari Begam
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (Central University), Santiniketan-731 235, West Bengal, India
| | - Mullicka Mandal
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (Central University), Santiniketan-731 235, West Bengal, India
| | - Nayana Nayek
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (Central University), Santiniketan-731 235, West Bengal, India
| | - Indrajit Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (Central University), Santiniketan-731 235, West Bengal, India
| | - Bhagirath Mandal
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (Central University), Santiniketan-731 235, West Bengal, India
| |
Collapse
|
34
|
Nurjamal K, Brahmachari G. Sodium Formate-Catalyzed One-Pot Synthesis of Functionalized Spiro[indoline-3,5′-pyrido[2,3-d
]pyrimidine]/Spiro[acenaphthylene-1,5′-pyrido[2,3-d
]-pyrimidine] Derivatives. ChemistrySelect 2019. [DOI: 10.1002/slct.201803508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Khondekar Nurjamal
- Laboratory of Natural Products & Organic Synthesis; Department of Chemistry; Visva-Bharati (a Central University); Santiniketan- 731 235, West Bengal India
| | - Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis; Department of Chemistry; Visva-Bharati (a Central University); Santiniketan- 731 235, West Bengal India
| |
Collapse
|
35
|
Brahmachari G, Karmakar I. Diversely Functionalized
N
‐Alkyl/Substituted alkyl,
S
‐2‐nitro‐1‐arylethyl Dithiocarbamates: Green Synthesis, Large Scale Application, and Insights in Reaction Mechanism. ChemistrySelect 2019. [DOI: 10.1002/slct.201803531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic SynthesisDepartment of ChemistryVisva-Bharati (a Central University) Santiniketan- 731 235, West Bengal India
| | - Indrajit Karmakar
- Laboratory of Natural Products & Organic SynthesisDepartment of ChemistryVisva-Bharati (a Central University) Santiniketan- 731 235, West Bengal India
| |
Collapse
|
36
|
Kaur G, Devi M, Kumari A, Devi R, Banerjee B. One-Pot Pseudo Five Component Synthesis of Biologically Relevant 1,2,6-Triaryl-4-arylamino-piperidine-3-ene-3- carboxylates: A Decade Update. ChemistrySelect 2018. [DOI: 10.1002/slct.201801887] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Gurpreet Kaur
- Department of Chemistry; Indus International University V.P.O. Bathu, Distt. Una, Himachal Pradesh -; 174301 India
| | - Mamta Devi
- Department of Chemistry; Indus International University V.P.O. Bathu, Distt. Una, Himachal Pradesh -; 174301 India
| | - Anjana Kumari
- Department of Chemistry; Indus International University V.P.O. Bathu, Distt. Una, Himachal Pradesh -; 174301 India
| | - Rekha Devi
- Department of Chemistry; Indus International University V.P.O. Bathu, Distt. Una, Himachal Pradesh -; 174301 India
| | - Bubun Banerjee
- Department of Chemistry; Indus International University V.P.O. Bathu, Distt. Una, Himachal Pradesh -; 174301 India
| |
Collapse
|
37
|
Mohamadpour F. Green and Convenient One-Pot Access to Polyfunctionalized Piperidine Scaffolds via Glutamic Acid Catalyzed Knoevenagel- Intramolecular [4+2] aza-Diels-Alder Imin-Based Multi-Component Reaction Under Ambient Temperature. Polycycl Aromat Compd 2018. [DOI: 10.1080/10406638.2018.1472111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Farzaneh Mohamadpour
- Young Researchers and Elite Club, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| |
Collapse
|
38
|
Brahmachari G, Nayek N. A Facile Synthetic Route to Biologically Relevant Substituted 1,4-Naphthoquinonyl-2-oxoindolinylpyrimidines Under Metal-Free Organocatalytic Conditions. ChemistrySelect 2018. [DOI: 10.1002/slct.201800462] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis; Department of Chemistry; Visva-Bharati (A Central University); Santiniketan-731 235, West Bengal India
| | - Nayana Nayek
- Laboratory of Natural Products & Organic Synthesis; Department of Chemistry; Visva-Bharati (A Central University); Santiniketan-731 235, West Bengal India
| |
Collapse
|
39
|
Brahmachari G, Begam S, Nurjamal K. Sulfamic Acid‐Catalyzed One‐Pot Synthesis of a New Series of Biologically Relevant Indole‐Uracil Molecular Hybrids in Water at Room Temperature. ChemistrySelect 2018. [DOI: 10.1002/slct.201800488] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of ChemistryVisva-Bharati (A Central University) Santiniketan- 731 235, West Bengal India
| | - Sanchari Begam
- Laboratory of Natural Products & Organic Synthesis, Department of ChemistryVisva-Bharati (A Central University) Santiniketan- 731 235, West Bengal India
| | - Khondekar Nurjamal
- Laboratory of Natural Products & Organic Synthesis, Department of ChemistryVisva-Bharati (A Central University) Santiniketan- 731 235, West Bengal India
| |
Collapse
|
40
|
Aluminized polyborate: a novel catalyst for the multicomponent solvent-free synthesis of alkyl 1,2,6-trisubstituted-4-[(hetero)arylamino]-1,2,5,6-tetrahydropyridine-3-carboxylates. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1340-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Khan MM, Khan S, Saigal, Sahoo SC. Efficient and Eco-Friendly One-Pot Synthesis of Functionalized Furan-2-one, Pyrrol-2-one, and Tetrahydropyridine Using Lemon Juice as a Biodegradable Catalyst. ChemistrySelect 2018. [DOI: 10.1002/slct.201702933] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- M. Musawwer Khan
- Department of Chemistry; Aligarh Muslim University; Aligarh- 202002 India
| | - Sarfaraz Khan
- Department of Chemistry; Aligarh Muslim University; Aligarh- 202002 India
| | - Saigal
- Department of Chemistry; Aligarh Muslim University; Aligarh- 202002 India
| | - Subash C. Sahoo
- Department of Chemistry; Punjab University; Chandigarh- 160014 India
| |
Collapse
|
42
|
A green and efficient synthesis of isoxazol-5(4H)-one derivatives in water and a DFT study. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-017-1246-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
43
|
Sharghi H, Aboonajmi J, Mozaffari M, Doroodmand MM, Aberi M. Application and developing of iron‐doped multi‐walled carbon nanotubes (Fe/MWCNTs) as an efficient and reusable heterogeneous nanocatalyst in the synthesis of heterocyclic compounds. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.4124] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hashem Sharghi
- Department of Chemistry, College of SciencesShiraz University Shiraz 71454 Iran
| | - Jasem Aboonajmi
- Department of Chemistry, College of SciencesShiraz University Shiraz 71454 Iran
| | - Mozhdeh Mozaffari
- Department of Chemistry, College of SciencesShiraz University Shiraz 71454 Iran
| | | | - Mahdi Aberi
- Department of Chemistry, College of SciencesShiraz University Shiraz 71454 Iran
| |
Collapse
|
44
|
Sobhani-Nasab A, Ziarati A, Rahimi-Nasrabadi M, Ganjali MR, Badiei A. Five-component domino synthesis of tetrahydropyridines using hexagonal PbCr
x
Fe12−x
O19 as efficient magnetic nanocatalyst. RESEARCH ON CHEMICAL INTERMEDIATES 2017; 43:6155-6165. [DOI: 10.1007/s11164-017-2982-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Das S, da Silva CJ, Silva MDM, Dantas MDDA, de Fátima Â, Góis Ruiz ALT, da Silva CM, de Carvalho JE, Santos JCC, Figueiredo IM, da Silva-Júnior EF, de Aquino TM, de Araújo-Júnior JX, Brahmachari G, Modolo LV. Highly functionalized piperidines: Free radical scavenging, anticancer activity, DNA interaction and correlation with biological activity. J Adv Res 2017; 9:51-61. [PMID: 30046486 PMCID: PMC6057241 DOI: 10.1016/j.jare.2017.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 11/23/2022] Open
Abstract
Twenty-five piperidines were studied as potential radical scavengers and antitumor agents. Quantitative interaction of compounds with ctDNA using spectroscopic techniques was also evaluated. Our results demonstrate that the evaluated piperidines possesses different abilities to scavenge the radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the anion radical superoxide (•O2−). The piperidine 19 was the most potent radical DPPH scavenger, while the most effective to •O2− scavenger was piperidine 10. In general, U251, MCF7, NCI/ADR-RES, NCI-H460 and HT29 cells were least sensitive to the tested compounds and all compounds were considerably more toxic to the studied cancer cell lines than to the normal cell line HaCaT. The binding mode of the compounds and ctDNA was preferably via intercalation. In addition, these results were confirmed based on theoretical studies. Finally, a linear and exponential correlation between interaction constant (Kb) and GI50 for several human cancer cell was observed.
Collapse
Affiliation(s)
- Suvankar Das
- Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| | - Cristiane J da Silva
- Department of Botany, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marina de M Silva
- Institute of Chemistry and Biotechnology, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | | | - Ângelo de Fátima
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Lúcia T Góis Ruiz
- Chemical, Biological and Agricultural Pluridisciplinary Research Center, Universidade Estadual de Campinas, Paulínia, SP, Brazil
| | - Cleiton M da Silva
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - João Ernesto de Carvalho
- Chemical, Biological and Agricultural Pluridisciplinary Research Center, Universidade Estadual de Campinas, Paulínia, SP, Brazil
| | - Josué C C Santos
- Institute of Chemistry and Biotechnology, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Isis M Figueiredo
- Institute of Chemistry and Biotechnology, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Edeildo F da Silva-Júnior
- Institute of Chemistry and Biotechnology, Universidade Federal de Alagoas, Maceió, AL, Brazil.,Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Thiago M de Aquino
- Institute of Chemistry and Biotechnology, Universidade Federal de Alagoas, Maceió, AL, Brazil.,Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - João X de Araújo-Júnior
- Institute of Chemistry and Biotechnology, Universidade Federal de Alagoas, Maceió, AL, Brazil.,Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Goutam Brahmachari
- Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| | | |
Collapse
|
46
|
Suhud K, Hasbullah SA, Ahmad M, Heng LY, Kassim MB. Crystal structure of 4-meth-oxy- N-(piperidine-1-carbono-thio-yl)benzamide. Acta Crystallogr E Crystallogr Commun 2017; 73:1530-1533. [PMID: 29250374 PMCID: PMC5730311 DOI: 10.1107/s2056989017013317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/18/2017] [Indexed: 11/17/2022]
Abstract
In the title compound, C14H18N2O2S, the piperidine ring has a chair conformation. Its mean plane is twisted with respect to the 4-meth-oxy-benzoyl ring, with a dihedral angle of 63.0 (3)°. The central N-C(=S)-N(H)-C(=O) bridge is twisted with an N-C-N-C torsion angle of 74.8 (6)°. In the crystal, mol-ecules are linked by N-H⋯O and C-H⋯O hydrogen bonds, forming chains along the c-axis direction. Adjacent chains are linked by C-H⋯π inter-actions, forming layers parallel to the ac plane. The layers are linked by offset π-π inter-actions [inter-centroid distance = 3.927 (3) Å], forming a supra-molecular three-dimensional structure.
Collapse
Affiliation(s)
- Khairi Suhud
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Selangor, Malaysia
- Department of Chemistry, Mathematic & Natural Science Faculty, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Siti Aishah Hasbullah
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Selangor, Malaysia
| | - Musa Ahmad
- Chemical Technology Program, Faculty of Science Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan
| | - Lee Yook Heng
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Selangor, Malaysia
| | - Mohammad B. Kassim
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Selangor, Malaysia
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Selangor, Malaysia
| |
Collapse
|
47
|
Two stereoisomers of butenedioic acid-mediated synthesis of tetrahydropyridine carboxylate derivatives with the same stereochemistry. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-3127-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Pourmousavi SA, Moghimi P, Ghorbani F, Zamani M. Sulfonated polynaphthalene as an effective and reusable catalyst for the one-pot preparation of amidoalkyl naphthols: DFT and spectroscopic studies. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
49
|
Brahmachari G, Nayek N. Catalyst-Free One-Pot Three-Component Synthesis of Diversely Substituted 5-Aryl-2-oxo-/thioxo-2,3-dihydro-1 H-benzo[6,7]chromeno[2,3- d]pyrimidine-4,6,11(5 H)-triones Under Ambient Conditions. ACS OMEGA 2017; 2:5025-5035. [PMID: 31457779 PMCID: PMC6641957 DOI: 10.1021/acsomega.7b00791] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/14/2017] [Indexed: 06/10/2023]
Abstract
A simple, catalyst-free, straightforward, and highly efficient one-pot synthesis of pharmaceutically interesting diverse kind of a new series of functionalized 5-aryl-2-oxo-/thioxo-2,3-dihydro-1H-benzo[6,7]chromeno[2,3-d]pyrimidine-4,6,11(5H)-triones 4 (4-1-4-37) and substituted 5,5'-(1,4-phenylene)bis(2-oxo-/thioxo-2,3-dihydro-1H-benzo[6,7]chromeno[2,3-d]pyrimidine-4,6,11(5H)-trione) derivatives 4' (4'-1-4'-3) has been developed based on a three-component reaction between barbituric acid/N,N-dimethylbarbituric acid/2-thiobarbituric acid (1), aromatic aldehydes (2), and 2-hydroxy-1,4-naphthoquinone (3) in aqueous ethanol at room temperature (25-30 °C). The salient features of this protocol are mild reaction conditions, use of no catalyst, no need of column chromatographic purification, excellent yields, high atom economy, eco-friendliness, easy isolation of products, and reusability of reaction media.
Collapse
|
50
|
Khojastehnezhad A, Maleki B, Karrabi B, Seresht ER. Synthesis of Highly Functionalized Piperidines Using Polyphosphoric Acid Supported on Silica-coated Magnetic Nanoparticles. ORG PREP PROCED INT 2017. [DOI: 10.1080/00304948.2017.1342505] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Amir Khojastehnezhad
- Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Behrooz Maleki
- Department of Chemistry, Hakim Sabzevari University, Sabzevar 96179-76487, Iran
| | - Behnaz Karrabi
- Department of Chemistry, Hakim Sabzevari University, Sabzevar 96179-76487, Iran
| | | |
Collapse
|