1
|
Gu J, Sim BR, Li J, Yu Y, Qin L, Wu L, Liu H, Xu Y, Zhao YL, Nie Y. Coevolution-based protein engineering of alcohol dehydrogenase at distal sites enables enzymatic compatibility with substrate diversity and stereoselectivity. Int J Biol Macromol 2025; 306:141233. [PMID: 39993679 DOI: 10.1016/j.ijbiomac.2025.141233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/16/2025] [Accepted: 02/16/2025] [Indexed: 02/26/2025]
Abstract
Chiral alcohols with various substituents and functional groups are attractive synthesizers in many fields. Biocatalysts have attracted great interest for their use in " sustainable chemistry". However, substrate specificity of enzymes limits their widespread use as "generalists" in biocatalysis. In addition, engineering enzymes for simultaneously improving catalytic efficiency and stereoselectivity for structurally diverse substrates is a contemporary challenge. Inspired by naturally occurring coevolution of residues dedicated to a particular function and clustered together in space, we applied coevolution-based engineering to the alcohol dehydrogenase CpRCR from Candida parapsilosis to identify distal sites which can synergistically improve the catalytic properties of diverse substrates. Five variants were developed by clustering the coupling strength and structure of coevolutionary sites which showed improved (up to 28-fold) catalytic efficiency with high stereoselectivity toward 16 structurally diverse substrates (aryl ketones, heterocyclic ketones and β-ketoesters). In particular, for substrate 2-acetylpyridine, the specific activity of K191L/D216H is 12-fold higher than the previously reported highest activity of alcohol dehydrogenase. Theses distal mutations do not directly modify the active center but rather modulate catalytic capacity in various allosteric ways favoring substrate diversity. This study provides a broadly applicable strategy for protein engineering and expanded the applications of biocatalyst on value-added chemicals.
Collapse
Affiliation(s)
- Jie Gu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Byu Ri Sim
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, MOE-LSB & MOE-LSC, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Biochemistry, University of Toronto, Ontario M5S 3H6, Canada
| | - Jiarui Li
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yangqing Yu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Lei Qin
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Lunjie Wu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Huan Liu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, MOE-LSB & MOE-LSC, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yao Nie
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Gu J, Mu W, Xu Y, Nie Y. From discovery to application: Enabling technology-based optimizing carbonyl reductases biocatalysis for active pharmaceutical ingredient synthesis. Biotechnol Adv 2025; 79:108496. [PMID: 39647674 DOI: 10.1016/j.biotechadv.2024.108496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/04/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024]
Abstract
The catalytic conversion of chiral alcohols and corresponding carbonyl compounds by carbonyl reductases (alcohol dehydrogenases), which are NAD(P) or NAD(P)H-dependent oxidoreductases, has attracted considerable attention. However, existing carbonyl reductases are insufficient to meet the demands of diverse industrial applications; hence, new enzymes with functions that can expand the toolbox of biocatalysts are urgently required. Developing precisely controlled chiral biocatalysts is of great significance for the efficient development of a broad spectrum of active pharmaceutical ingredients via biosynthesis. In this review, we summarized methods for discovering novel natural carbonyl reductases from various perspectives. Furthermore, advances in protein engineering, utilizing known sequence and structural information as well as catalytic dynamics mechanisms to improve potential functions, are also addressed. The exponential growth in data-driven tools over the past decade has made it possible to de novo design carbonyl reductases. Additionally, various applications of these high-performance carbonyl reductases and different strategies for coenzyme regeneration involving photocatalysis during the reaction process were reviewed. These advancements will bring new opportunities and challenges to the fields of green chemistry and biosynthesis in the future.
Collapse
Affiliation(s)
- Jie Gu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wanmeng Mu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Cheng F, Xie WB, Gao XF, Chu RL, Xu SY, Wang YJ, Zheng YG. Development of a new chemo-enzymatic catalytic route for synthesis of (S)- 2-chlorophenylglycine. J Biotechnol 2022; 358:17-24. [PMID: 35987310 DOI: 10.1016/j.jbiotec.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022]
Abstract
(S)-2-chlorophenylglycine ((S)-CPG) is a key chiral intermediate for the synthesis of clopidogrel. Herein, a novel, efficient and environmentally friendly chemo-enzymatic route for the preparation of optically pure (S)-CPG was developed. A straightforward chemical synthesis of the corresponding prochiral keto acid substrate (2-chlorophenyl)glyoxylic acid (CPGA) was developed with 91.7% yield, which was enantioselectively aminated by leucine dehydrogenase (LeuDH) to (S)-CPG. Moreover, protein engineering of LeuDH was performed via directed evolution and semi-rational design. A beneficial variant EsLeuDH-F362L with enlarged substrate-binding pocket and increased hydrogen bond between K77 and substrate CPGA was constructed, which exhibited 2.1-fold enhanced specific activity but decreased thermal stability. Coupled with a glucose dehydrogenase from Bacillus megaterium (BmGDH) for NADH regeneration, EsLeuDH-F362L completely converted up to 0.5 M CPGA to (S)-CPG in 8 h at 40 °C.
Collapse
Affiliation(s)
- Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Wei-Bang Xie
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xiao-Fan Gao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Rong-Liang Chu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Shen-Yuan Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
4
|
Simić S, Zukić E, Schmermund L, Faber K, Winkler CK, Kroutil W. Shortening Synthetic Routes to Small Molecule Active Pharmaceutical Ingredients Employing Biocatalytic Methods. Chem Rev 2021; 122:1052-1126. [PMID: 34846124 DOI: 10.1021/acs.chemrev.1c00574] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biocatalysis, using enzymes for organic synthesis, has emerged as powerful tool for the synthesis of active pharmaceutical ingredients (APIs). The first industrial biocatalytic processes launched in the first half of the last century exploited whole-cell microorganisms where the specific enzyme at work was not known. In the meantime, novel molecular biology methods, such as efficient gene sequencing and synthesis, triggered breakthroughs in directed evolution for the rapid development of process-stable enzymes with broad substrate scope and good selectivities tailored for specific substrates. To date, enzymes are employed to enable shorter, more efficient, and more sustainable alternative routes toward (established) small molecule APIs, and are additionally used to perform standard reactions in API synthesis more efficiently. Herein, large-scale synthetic routes containing biocatalytic key steps toward >130 APIs of approved drugs and drug candidates are compared with the corresponding chemical protocols (if available) regarding the steps, reaction conditions, and scale. The review is structured according to the functional group formed in the reaction.
Collapse
Affiliation(s)
- Stefan Simić
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Erna Zukić
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Luca Schmermund
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Kurt Faber
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Christoph K Winkler
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria.,Field of Excellence BioHealth─University of Graz, 8010 Graz, Austria.,BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
5
|
Key sites insight on the stereoselectivity of four mined aldo-keto reductases toward α-keto esters and halogen-substituted acetophenones. Appl Microbiol Biotechnol 2019; 103:6119-6128. [DOI: 10.1007/s00253-019-09932-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/01/2019] [Accepted: 05/20/2019] [Indexed: 01/30/2023]
|
6
|
Wu YX, Pan J, Yu HL, Xu JH. Enzymatic synthesis of 10-oxostearic acid in high space-time yield via cascade reaction of a new oleate hydratase and an alcohol dehydrogenase. J Biotechnol 2019; 306S:100008. [DOI: 10.1016/j.btecx.2019.100008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 11/27/2022]
|
7
|
A 3D-QSAR assisted activity prediction strategy for expanding substrate spectra of an aldehyde ketone reductase. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Gu G, Yang T, Lu J, Wen J, Dang L, Zhang X. Iridium/f-ampha-catalyzed asymmetric hydrogenation of aromatic α-keto esters. Org Chem Front 2018. [DOI: 10.1039/c8qo00047f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We herein report an iridium/f-ampha catalytic system for the asymmetric hydrogenation of aromatic α-keto esters.
Collapse
Affiliation(s)
- Guoxian Gu
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
| | - Tilong Yang
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
| | - Jiaxiang Lu
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
| | - Jialin Wen
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province
- Shantou University
- Shantou
- P. R. China
| | - Xumu Zhang
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
| |
Collapse
|
9
|
Saeed A, Shahzad D, Faisal M, Larik FA, El-Seedi HR, Channar PA. Developments in the synthesis of the antiplatelet and antithrombotic drug (S)-clopidogrel. Chirality 2017; 29:684-707. [DOI: 10.1002/chir.22742] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/01/2017] [Accepted: 04/28/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Aamer Saeed
- Department of Chemistry; Quaid-i-Azam University-45320; Islamabad Pakistan
| | - Danish Shahzad
- Department of Chemistry; Quaid-i-Azam University-45320; Islamabad Pakistan
| | - Muhammad Faisal
- Department of Chemistry; Quaid-i-Azam University-45320; Islamabad Pakistan
| | - Fayaz Ali Larik
- Department of Chemistry; Quaid-i-Azam University-45320; Islamabad Pakistan
| | - Hesham R. El-Seedi
- Division of Pharmacognosy, Department of Medicinal Chemistry; Uppsala University, Biomedical Centre; Uppsala Sweden
| | | |
Collapse
|
10
|
Zheng YG, Yin HH, Yu DF, Chen X, Tang XL, Zhang XJ, Xue YP, Wang YJ, Liu ZQ. Recent advances in biotechnological applications of alcohol dehydrogenases. Appl Microbiol Biotechnol 2017; 101:987-1001. [PMID: 28074225 DOI: 10.1007/s00253-016-8083-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/29/2022]
Abstract
Alcohol dehydrogenases (ADHs), which belong to the oxidoreductase superfamily, catalyze the interconversion between alcohols and aldehydes or ketones with high stereoselectivity under mild conditions. ADHs are widely employed as biocatalysts for the dynamic kinetic resolution of racemic substrates and for the preparation of enantiomerically pure chemicals. This review provides an overview of biotechnological applications for ADHs in the production of chiral pharmaceuticals and fine chemicals.
Collapse
Affiliation(s)
- Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Huan-Huan Yin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Dao-Fu Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiang Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiao-Ling Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiao-Jian Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
11
|
|
12
|
Chen X, Mei T, Cui Y, Chen Q, Liu X, Feng J, Wu Q, Zhu D. Highly Efficient Synthesis of Optically Pure (S)-1-phenyl-1,2-ethanediol by a Self-Sufficient Whole Cell Biocatalyst. ChemistryOpen 2015; 4:483-8. [PMID: 26478844 PMCID: PMC4603410 DOI: 10.1002/open.201500045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Indexed: 11/28/2022] Open
Abstract
Terminal vicinal diols are important chiral building blocks and intermediates in organic synthesis. Reduction of α-hydroxy ketones provides a straightforward approach to access these important compounds. In this study, it has been found that asymmetric reduction of a series of α-hydroxy aromatic ketones and 1-hydroxy-2-pentanone, catalyzed by Candida magnolia carbonyl reductase (CMCR) with glucose dehydrogenase (GDH) from Bacillus subtilis for cofactor regeneration, afforded 1-aryl-1,2-ethanediols and pentane-1,2-diol, respectively, in up to 99 % ee. In order to evaluate the efficiency of the bioreduction, lyophilized recombinant Escherichia coli whole cells coexpressing CMCR and GDH genes were used as the biocatalyst and α-hydroxy acetophenone as the model substrate, and the reaction conditions, such as pH, cosolvent, the amount of biocatalyst and the presences of a cofactor (i.e., NADP+), were optimized. Under the optimized conditions (pH 6, 16 h), the bioreduction proceeded smoothly at 1.0 m substrate concentration without the external addition of cofactor, and the product (S)-1-phenyl-1,2-ethanediol was isolated with 90 % yield and 99 % ee. This offers a practical biocatalytic method for the preparation of these important vicinal diols.
Collapse
Affiliation(s)
- Xi Chen
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin, 300308, P. R. China
| | - Ting Mei
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin, 300308, P. R. China ; College of Bioengineering, Tianjin University of Science and Technology Tianjin, 300457, P. R. China
| | - Yunfeng Cui
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin, 300308, P. R. China
| | - Qijia Chen
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin, 300308, P. R. China ; University of Chinese Academy of Sciences Beijing, 100049, P. R. China
| | - Xiangtao Liu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin, 300308, P. R. China
| | - Jinhui Feng
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin, 300308, P. R. China
| | - Qiaqing Wu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin, 300308, P. R. China
| | - Dunming Zhu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin, 300308, P. R. China ; University of Chinese Academy of Sciences Beijing, 100049, P. R. China
| |
Collapse
|
13
|
Pan J, Zheng GW, Ye Q, Xu JH. Optimization and Scale-up of a Bioreduction Process for Preparation of Ethyl (S)-4-Chloro-3-hydroxybutanoate. Org Process Res Dev 2014. [DOI: 10.1021/op500088w] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiang Pan
- Laboratory of Biocatalysis
and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Gao-Wei Zheng
- Laboratory of Biocatalysis
and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Qin Ye
- Laboratory of Biocatalysis
and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jian-He Xu
- Laboratory of Biocatalysis
and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
14
|
Xu YP, Guan YH, Yu HL, Ni Y, Ma BD, Xu JH. Improved o-chlorobenzoylformate bioreduction by stabilizing aldo-keto reductase YtbE with additives. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Ma BD, Kong XD, Yu HL, Zhang ZJ, Dou S, Xu YP, Ni Y, Xu JH. Increased Catalyst Productivity in α-Hydroxy Acids Resolution by Esterase Mutation and Substrate Modification. ACS Catal 2014. [DOI: 10.1021/cs401183e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bao-Di Ma
- Laboratory of Biocatalysis
and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xu-Dong Kong
- Laboratory of Biocatalysis
and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hui-Lei Yu
- Laboratory of Biocatalysis
and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhi-Jun Zhang
- Laboratory of Biocatalysis
and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Shuai Dou
- Laboratory of Biocatalysis
and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yan-Peng Xu
- Laboratory of Biocatalysis
and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yan Ni
- Laboratory of Biocatalysis
and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian-He Xu
- Laboratory of Biocatalysis
and Synthetic Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
16
|
Zhang ZJ, Pan J, Ma BD, Xu JH. Efficient Biocatalytic Synthesis of Chiral Chemicals. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 155:55-106. [DOI: 10.1007/10_2014_291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
17
|
Recent trends and novel concepts in cofactor-dependent biotransformations. Appl Microbiol Biotechnol 2013; 98:1517-29. [PMID: 24362856 DOI: 10.1007/s00253-013-5441-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 12/21/2022]
Abstract
Cofactor-dependent enzymes catalyze a broad range of synthetically useful transformations. However, the cofactor requirement also poses economic and practical challenges for the application of these biocatalysts. For three decades, considerable research effort has been devoted to the development of reliable in situ regeneration methods for the most commonly employed cofactors, particularly NADH and NADPH. Today, researchers can choose from a plethora of options, and oxidoreductases are routinely employed even on industrial scale. Nevertheless, more efficient cofactor regeneration methods are still being developed, with the aim of achieving better atom economy, simpler reaction setups, and higher productivities. Besides, cofactor dependence has been recognized as an opportunity to confer novel reactivity upon enzymes by engineering their cofactors, and to couple (redox) biotransformations in multi-enzyme cascade systems. These novel concepts will help to further establish cofactor-dependent biotransformations as an attractive option for the synthesis of biologically active compounds, chiral building blocks, and bio-based platform molecules.
Collapse
|
18
|
Novel stereoselective carbonyl reductase from Kluyveromyces marxianus for chiral alcohols synthesis. Chem Res Chin Univ 2013. [DOI: 10.1007/s40242-013-3286-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|