1
|
Chen J, Zhang X, Wu J, Wang R, Lei C, An Y. Facile one-pot synthesis of diarylacetylenes from arylaldehydes via an addition-double elimination process. Org Biomol Chem 2021; 19:4701-4705. [PMID: 33988213 DOI: 10.1039/d1ob00627d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical one-pot protocol has been developed to synthesize diarylacetylenes from arylaldehydes by treatment with 1-(arylmethyl)benzotriazoles and LiN(SiMe3)2. The reaction proceeded through imine formation, Mannich-type addition and double elimination to deliver products in up to 99% yields with broad substrate scope. In addition, gram-scale synthesis of 1-bromo-4-(phenylethynyl)benzene has been demonstrated.
Collapse
Affiliation(s)
- Jianyang Chen
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
| | - Xuan Zhang
- School of Intelligent Manufacturing Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Jiajun Wu
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
| | - Rui Wang
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
| | - Chunlin Lei
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
| | - Yanan An
- College of Pharmacy, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| |
Collapse
|
2
|
Joarder DD, Gayen S, Sarkar R, Bhattacharya R, Roy S, Maiti DK. (Ar-tpy)Ru II(ACN) 3: A Water-Soluble Catalyst for Aldehyde Amidation, Olefin Oxo-Scissoring, and Alkyne Oxygenation. J Org Chem 2019; 84:8468-8480. [PMID: 31244154 DOI: 10.1021/acs.joc.9b00487] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The synthetic chemists always look for developing new catalysts, sustainable catalysis, and their applications in various organic transformations. Herein, we report a new class of water-soluble complexes, (Ar-tpy)RuII(ACN)3, utilizing designed terpyridines possessing electron-donating and -withdrawing aromatic residues for tuning the catalytic activity of the Ru(II) complex. These complexes displayed excellent catalytic activity for several oxidative organic transformations including late-stage C-H functionalization of aldehydes with NH2OR to valuable primary amides in nonconventional aqueous media with excellent yield. Its diverse catalytic power was established for direct oxo-scissoring of a wide range of alkenes to furnish aldehydes and/or ketones in high yield using a low catalyst loading in the water. Its smart catalytic activity under mild conditions was validated for dioxygenation of alkynes to highly demanding labile synthons, 1,2-diketones, and/or acids. This general and sustainable catalysis was successfully employed on sugar-based substrates to obtain the chiral amides, aldehydes, and labile 1,2-diketones. The catalyst is recovered and reused with a moderate turnover. The proposed mechanistic pathway is supported by isolation of the intermediates and their characterization. This multifaceted sustainable catalysis is a unique tool, especially for late-stage functionalization, to furnish the targeted compounds through frequently used amidation and oxygenation processes in the academia and industry.
Collapse
Affiliation(s)
- Dripta De Joarder
- Department of Chemistry , University of Calcutta , 92 A. P. C. Road , Kolkata 700009 , India
| | - Subrata Gayen
- Department of Chemistry , University of Calcutta , 92 A. P. C. Road , Kolkata 700009 , India
| | - Rajarshi Sarkar
- School of Technology Management & Engineering , NMIMS , Indore 453112 , India
| | - Rajarshi Bhattacharya
- Department of Chemistry , University of Calcutta , 92 A. P. C. Road , Kolkata 700009 , India
| | | | - Dilip K Maiti
- Department of Chemistry , University of Calcutta , 92 A. P. C. Road , Kolkata 700009 , India
| |
Collapse
|
3
|
Sapegin A, Krasavin M. One-Pot Conversion of Aldehydes and Aryl Halides to Disubstituted Alkynes via Tandem Seyferth–Gilbert Homologation/Copper-Free Sonogashira Coupling. J Org Chem 2019; 84:8788-8795. [DOI: 10.1021/acs.joc.9b01367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
| | - Mikhail Krasavin
- Saint Petersburg State University, Saint Petersburg 199034, Russia
| |
Collapse
|
4
|
León T, Fernández E. The Pauson-Khand reaction using alkynylboronic esters: solving a long-standing regioselectivity issue. Chem Commun (Camb) 2018; 52:9363-6. [PMID: 27374166 DOI: 10.1039/c6cc04717c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first intermolecular Pauson-Khand reaction, conducted using internal alkynylboronic esters, allows the installation of the boronic ester moiety at the β-position of the cyclopentenone with total regio- and stereoselectivity.
Collapse
Affiliation(s)
- Thierry León
- Center for Chemical Technology of Catalonia (CTQC), Marcel·lí Domingo, s/n, Edifici N5, 43007 Tarragona, Spain.
| | - Elena Fernández
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo, s/n, Edifici N4, 43007 Tarragona, Spain.
| |
Collapse
|
5
|
Maddali LNR, Meka S. Cross-coupling reactivity of 1,1-dichloroalkenes under palladium catalysis: domino synthesis of diarylalkynes. NEW J CHEM 2018. [DOI: 10.1039/c7nj05107g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient synthesis of diarylalkynes was achieved from the domino cross-coupling reaction of 1,1-dichloroalkenes with triarylbismuth reagents under palladium-catalyzed conditions.
Collapse
Affiliation(s)
- L. N. Rao Maddali
- Department of Chemistry, Indian Institute of Technology Kanpur
- Kanpur-208 016
- India
| | - Suresh Meka
- Department of Chemistry, Indian Institute of Technology Kanpur
- Kanpur-208 016
- India
| |
Collapse
|
6
|
Zhou J, Lee CI, Ozerov OV. Computational Study of the Mechanism of Dehydrogenative Borylation of Terminal Alkynes by SiNN Iridium Complexes. ACS Catal 2017. [DOI: 10.1021/acscatal.7b03835] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jia Zhou
- MIIT
Key Laboratory of Critical Materials Technology for New Energy Conversion
and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Chun-I Lee
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Oleg V. Ozerov
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| |
Collapse
|
7
|
Iwasaki M, Nishihara Y. Synthesis of Multisubstituted Olefins through Regio- and Stereoselective Addition of Interelement Compounds Having B-Si, B-B, and Cl-S Bonds to Alkynes, and Subsequent Cross-Couplings. CHEM REC 2016; 16:2031-45. [PMID: 27331376 DOI: 10.1002/tcr.201600017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Indexed: 11/06/2022]
Abstract
Multisubstituted olefins are fundamental motifs in organic compounds. In this account, we describe the synthesis of organic molecules bearing an olefinic moiety by the transition-metal-catalyzed regio- and stereoselective addition of a variety of interelement compounds to alkynes. Regio- and stereoselective silaboration, diborylation, and chlorothiolation have been achieved by using the transition-metal catalysts. The subsequent cross-coupling reactions of the boron-containing alkenes to install various aryl groups afforded the corresponding tri- and tetraarylated olefins. This account describes our research on the highly regio- and stereoselective synthesis of multifunctionalized olefins such as tetraarylethenes with four different aryl groups.
Collapse
Affiliation(s)
- Masayuki Iwasaki
- Research Institute for Interdisciplinary Science, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Yasushi Nishihara
- Research Institute for Interdisciplinary Science, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| |
Collapse
|
8
|
Shrestha B, Thapa S, Gurung SK, Pike RAS, Giri R. General Copper-Catalyzed Coupling of Alkyl-, Aryl-, and Alkynylaluminum Reagents with Organohalides. J Org Chem 2016; 81:787-802. [DOI: 10.1021/acs.joc.5b02077] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bijay Shrestha
- Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Surendra Thapa
- Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Santosh K. Gurung
- Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Ryan A. S. Pike
- Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Ramesh Giri
- Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
9
|
Lee CI, DeMott JC, Pell CJ, Christopher A, Zhou J, Bhuvanesh N, Ozerov OV. Ligand survey results in identification of PNP pincer complexes of iridium as long-lived and chemoselective catalysts for dehydrogenative borylation of terminal alkynes. Chem Sci 2015; 6:6572-6582. [PMID: 30090274 PMCID: PMC6054099 DOI: 10.1039/c5sc02161h] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/03/2015] [Indexed: 11/21/2022] Open
Abstract
Following the report on the successful use of SiNN pincer complexes of iridium as catalysts for dehydrogenative borylation of terminal alkynes (DHBTA) to alkynylboronates, this work examined a wide variety of related pincer ligands in the supporting role in DHBTA. The ligand selection included both new and previously reported ligands and was developed to explore systematic changes to the SiNN framework (the 8-(2-diisopropylsilylphenyl)aminoquinoline). Surprisingly, only the diarylamido/bis(phosphine) PNP system showed any DHBTA reactivity. The specific PNP ligand (bearing two diisopropylphosphino side donors) used in the screen showed DHBTA activity inferior to SiNN. However, taking advantage of the ligand optimization opportunities presented by the PNP system via the changes in the substitution at phosphorus led to the discovery of a catalyst whose activity, longevity, and scope far exceeded that of the original SiNN archetype. Several Ir complexes were prepared in a model PNP system and evaluated as potential intermediates in the catalytic cycle. Among them, the (PNP)Ir diboryl complex and the borylvinylidene complex were shown to be less competent in catalysis and thus likely not part of the catalytic cycle.
Collapse
Affiliation(s)
- Chun-I Lee
- Department of Chemistry , Texas A&M University , College Station , TX 77842 , USA .
| | - Jessica C DeMott
- Department of Chemistry , Texas A&M University , College Station , TX 77842 , USA .
| | - Christopher J Pell
- Department of Chemistry , Texas A&M University , College Station , TX 77842 , USA .
| | - Alyson Christopher
- Department of Chemistry , Brandeis University , MS 015, 415 South Street , Waltham , MA 02454 , USA
| | - Jia Zhou
- Department of Chemistry , Harbin Institute of Technology , Harbin 150001 , China
| | - Nattamai Bhuvanesh
- Department of Chemistry , Texas A&M University , College Station , TX 77842 , USA .
| | - Oleg V Ozerov
- Department of Chemistry , Texas A&M University , College Station , TX 77842 , USA .
| |
Collapse
|
10
|
Tsuchimoto T, Utsugi H, Sugiura T, Horio S. Alkynylboranes: A Practical Approach by Zinc-Catalyzed Dehydrogenative Coupling of Terminal Alkynes with 1,8-Naphthalenediaminatoborane. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201400767] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Ivachtchenko AV, Mitkin OD, Yamanushkin PM, Kuznetsova IV, Bulanova EA, Shevkun NA, Koryakova AG, Karapetian RN, Bichko VV, Trifelenkov AS, Kravchenko DV, Vostokova NV, Veselov MS, Chufarova NV, Ivanenkov YA. Discovery of novel highly potent hepatitis C virus NS5A inhibitor (AV4025). J Med Chem 2014; 57:7716-30. [PMID: 25148100 DOI: 10.1021/jm500951r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A series of next in class small-molecule hepatitis C virus (HCV) NS5A inhibitors with picomolar potency containing 2-pyrrolidin-2-yl-5-{4-[4-(2-pyrrolidin-2-yl-1H-imidazol-5-yl)buta-1,3-diynyl]phenyl}-1H-imidazole cores was designed based on the SAR studies available for the reported NS5A inhibitors. Compound 13a (AV4025), with (S,S,S,S)-stereochemistry (EC50 = 3.4 ± 0.2 pM, HCV replicon genotype 1b), was dramatically more active than were the compounds with two (S)- and two (R)-chiral centers. Human serum did not significantly reduce the antiviral activity (<4-fold). Relatively favorable pharmacokinetic features and good oral bioavailability were observed during animal studies. Compound 13a was well tolerated in rodents (in mice, LD50 = 2326 mg/kg or higher), providing a relatively high therapeutic index. During safety, pharmacology and subchronic toxicity studies in rats and dogs, it was not associated with any significant pathological or clinical findings. This compound is currently being evaluated in phase I/II clinical trials for the treatment of HCV infection.
Collapse
Affiliation(s)
- Alexandre V Ivachtchenko
- Alla Chem LLC , 1835 East Hallandale Beach Boulevard 442, Hallandale Beach, Florida 33009, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Jiao J, Nakajima K, Nishihara Y. Synthesis of Multisubstituted Olefins through Regio- and Stereoselective Silylborylation of an Alkynylboronate/Chemoselective Cross-Coupling Sequences. Org Lett 2013; 15:3294-7. [DOI: 10.1021/ol401333j] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiao Jiao
- Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan, Japan Science and Technology Agency, ACT-C, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan, and Department of Chemistry, Aichi University of Education, 1 Hirosawa, Igaya-cho, Kariya, Aichi 448-8542, Japan
| | - Kiyohiko Nakajima
- Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan, Japan Science and Technology Agency, ACT-C, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan, and Department of Chemistry, Aichi University of Education, 1 Hirosawa, Igaya-cho, Kariya, Aichi 448-8542, Japan
| | - Yasushi Nishihara
- Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan, Japan Science and Technology Agency, ACT-C, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan, and Department of Chemistry, Aichi University of Education, 1 Hirosawa, Igaya-cho, Kariya, Aichi 448-8542, Japan
| |
Collapse
|
13
|
Lee CI, Zhou J, Ozerov OV. Catalytic dehydrogenative borylation of terminal alkynes by a SiNN pincer complex of iridium. J Am Chem Soc 2013; 135:3560-6. [PMID: 23374079 DOI: 10.1021/ja311682c] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Compounds with carbon-boron bonds are versatile intermediates for building more complex molecules via the elaboration of the carbon-boron bonds into other carbon-element bonds. The synthesis of carbon-boron bonds by catalytic dehydrogenative borylation of carbon-hydrogen bonds with dialkoxyboranes (RO)2BH is particularly attractive. It has been demonstrated for a variety of carbon-hydrogen bond types but not for the C(sp)-H bonds of terminal alkynes, for which hydroboration of the triple bond is a competing process. We report a new iridium catalyst that is strictly chemoselective for C-H borylation of terminal alkynes. The key to the success of this catalyst appears to be the new ancillary SiNN pincer ligand that combines amido, quinoline, and silyl donors and gives rise to structurally unusual Ir complexes. A variety of terminal alkynes (RC≡C-H) can be converted to their alkynylboronates (RC≡C-Bpin, where pin = pinacolate) in high yield and purity within minutes at ambient temperature.
Collapse
Affiliation(s)
- Chun-I Lee
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77842, United States
| | | | | |
Collapse
|