1
|
Gray TE, Labasan KB, Daskhan GC, Bui DT, Joe M, Kumawat D, Schmidt EN, Klassen JS, Macauley MS. Synthesis of 4-azido sialic acid for testing against Siglec-7 and in metabolic oligosaccharide engineering. RSC Chem Biol 2025:d5cb00030k. [PMID: 40309065 PMCID: PMC12038855 DOI: 10.1039/d5cb00030k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025] Open
Abstract
An important approach for tracking and visualizing sialic acid-containing glycans involves using sialic acid reporters functionalized with bioorthogonal handles. More specifically, metabolic oligosaccharide engineering (MOE) commonly employs monosaccharides with an alkyne or azide handle for incorporation into cellular glycans, followed by a subsequent click reaction to elaborate with a biotin or fluorophore handle. For sialic acid, this has been carried out extensively, with an azide or alkyne appended to the C5 N-acetamido group being the most common location for the handle. However, circumstances may require the handle to be at different positions and, to date, the C7 and C9 positions have been shown to work to varying degrees. Herein, we synthesized protected 4AzNeu5Ac that could be incorporated into cellular glycans nearly as efficiently as Neu5Az and targeted with DBCO-biotin through strain promoted azide-alkyne cycloaddition. Owing to the good incorporation of 4AzNeu5Ac into cellular glycans, we followed up this ability by first synthesizing the deprotected form of 4AzNeu5Ac, using a thioglycoside to lock the anomeric center during deprotection of the acetyl groups. Activation of 4AzNeu5Ac to CMP-4AzNeu5Ac then enabled the use of this donor by human sialyltransferase ST3GAL1 to transfer CMP-4AzNeu5Ac to β-Galp-(1→3)-α-GalpNAc. With purified α-4AzNeup5Ac-(2→3)-β-Galp-(1→3)-α-GalpNAc in hand, we tested it as a ligand for Siglec-7 and found that the C4-Az modification is tolerated, opening future possibilities to exploit this position to generate high affinity and selective ligands. These findings expand the repertoire of metabolic oligosaccharide engineering agents and show that azide modifications are tolerated at the C4 position of sialic acid.
Collapse
Affiliation(s)
- Taylor E Gray
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
| | - Kristin B Labasan
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
| | - Gour C Daskhan
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
| | - Duong T Bui
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
| | - Maju Joe
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
| | - Dhanraj Kumawat
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
| | - Edward N Schmidt
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
| | - John S Klassen
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta Edmonton T6G 2G2 Canada
- Department of Medical Microbiology and Immunology, University of Alberta Edmonton T6G 2E1 Canada
| |
Collapse
|
2
|
Huynh CM, Mavliutova L, Sparrman T, Sellergren B, Irgum K. Elucidation of the Binding Orientation in α2,3- and α2,6-Linked Neu5Ac-Gal Epitopes toward a Hydrophilic Molecularly Imprinted Monolith. ACS OMEGA 2023; 8:44238-44249. [PMID: 38027366 PMCID: PMC10666243 DOI: 10.1021/acsomega.3c06836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
N-Acetylneuraminic acid and its α2,3/α2,6-glycosidic linkages with galactose (Neu5Ac-Gal) are major carbohydrate antigen epitopes expressed in various pathological processes, such as cancer, influenza, and SARS-CoV-2. We here report a strategy for the synthesis and binding investigation of molecularly imprinted polymers (MIPs) toward α2,3 and α2,6 conformations of Neu5Ac-Gal antigens. Hydrophilic imprinted monoliths were synthesized from melamine monomer in the presence of four different templates, namely, N-acetylneuraminic acid (Neu5Ac), N-acetylneuraminic acid methyl ester (Neu5Ac-M), 3'-sialyllactose (3SL), and 6'-sialyllactose (6SL), in a tertiary solvent mixture at temperatures varying from -20 to +80 °C. The MIPs prepared at cryotemperatures showed a preferential affinity for the α2,6 linkage sequence of 6SL, with an imprinting factor of 2.21, whereas the α2,3 linkage sequence of 3SL resulted in nonspecific binding to the polymer scaffold. The preferable affinity for the α2,6 conformation of Neu5Ac-Gal was evident also when challenged by a mixture of other mono- and disaccharides in an aqueous test mixture. The use of saturation transfer difference nuclear magnetic resonance (STD-NMR) on suspensions of crushed monoliths allowed for directional interactions between the α2,3/α2,6 linkage sequences on their corresponding MIPs to be revealed. The Neu5Ac epitope, containing acetyl and polyalcohol moieties, was the major contributor to the sequence recognition for Neu5Ac(α2,6)Gal(β1,4)Glc, whereas contributions from the Gal and Glc segments were substantially lower.
Collapse
Affiliation(s)
- Chau Minh Huynh
- Department
of Chemistry, Umeå University, S-90187 Umeå, Sweden
| | - Liliia Mavliutova
- Department
of Biomedical Sciences, Faculty of Health and Society, Malmö University, SE-20506 Malmö, Sweden
| | - Tobias Sparrman
- Department
of Chemistry, Umeå University, S-90187 Umeå, Sweden
| | - Börje Sellergren
- Department
of Biomedical Sciences, Faculty of Health and Society, Malmö University, SE-20506 Malmö, Sweden
| | - Knut Irgum
- Department
of Chemistry, Umeå University, S-90187 Umeå, Sweden
| |
Collapse
|
3
|
Uezono K, Maeda R, Yoritate M, Matoba H, Hirai G. Modification of the C3-Position of 2,3-Dehydro-2-deoxy- N-acetylneuraminic Acid with An Acetic Acid Equivalent. CHEM LETT 2023; 52:71-74. [DOI: 10.1246/cl.220507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Keiya Uezono
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Risa Maeda
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Makoto Yoritate
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroaki Matoba
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Go Hirai
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
4
|
Li Q, Guo J, Guo Z. Direct access to various C3-substituted sialyl glycal derivatives from 3-iodo-sialyl glycals. Org Biomol Chem 2021; 19:10169-10173. [PMID: 34779807 PMCID: PMC8857703 DOI: 10.1039/d1ob01977e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new and efficient method was developed for the synthesis of C3-substituted sialyl glycals that are useful for novel sialidase inhibitor discovery. This method was based on the cross-coupling reactions of 3-iodo-sialyl glycal methyl ester with boronic acids, alkenes and alkynes to directly introduce various functional groups to the sialyl glycal C3-position. A series of C3-aryl, alkyl, alkenyl, and alkynyl derivatives of sialyl glycal were efficiently and conveniently synthesized for the first time by this method, which has demonstrated its wide application scope.
Collapse
Affiliation(s)
- Qingjiang Li
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, USA.
| | - Jiatong Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, USA.
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, USA.
| |
Collapse
|
5
|
Ishizawa K, Majima S, Wei XF, Mitsunuma H, Shimizu Y, Kanai M. Copper(I)-Catalyzed Stereodivergent Propargylation of N-Acetyl Mannosamine for Protecting Group Minimal Synthesis of C3-Substituted Sialic Acids. J Org Chem 2019; 84:10615-10628. [DOI: 10.1021/acs.joc.9b00887] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kouhei Ishizawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Sohei Majima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Xiao-Feng Wei
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Harunobu Mitsunuma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yohei Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
6
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2013. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.09.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Saludes JP, Sahoo D, Monreal IA. A facile microwave-assisted protocol for rapid synthesis of N-acetylneuraminic acid congeners. NEW J CHEM 2014; 38:507-510. [PMID: 24678239 PMCID: PMC3963703 DOI: 10.1039/c3nj01459b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a simple, rapid and efficient microwave irradiation-assisted protocol that is 1- to 2-orders of magnitude faster than conventional techniques, providing an expedient access to the sialic acid congeners Neu5Ac1Me (1), Neu5Acβ1,2Me2 (2), Neu5Ac1Me O-peracetate (3) and 4,5-oxazoline of Neu5Ac2en1Me O-peracetate (4).
Collapse
Affiliation(s)
- Jonel P. Saludes
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Dhananjaya Sahoo
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - I. Abrrey Monreal
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
8
|
Krejcova L, Nejdl L, Hynek D, Krizkova S, Kopel P, Adam V, Kizek R. Beads-based electrochemical assay for the detection of influenza hemagglutinin labeled with CdTe quantum dots. Molecules 2013; 18:15573-86. [PMID: 24352014 PMCID: PMC6270527 DOI: 10.3390/molecules181215573] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/25/2013] [Accepted: 12/05/2013] [Indexed: 01/11/2023] Open
Abstract
In this study we describe a beads-based assay for rapid, sensitive and specific isolation and detection of influenza vaccine hemagglutinin (HA). Amplification of the hemagglutinin signal resulted from binding of an electrochemical label as quantum dots (QDs). For detection of the metal and protein part of the resulting HA-CdTe complex, two differential pulse voltammetric methods were used. The procedure includes automated robotic isolation and electrochemical analysis of the isolated product. The isolation procedure was based on the binding of paramagnetic particles (MPs) with glycan (Gly), where glycan was used as the specific receptor for linkage of the QD-labeled hemagglutinin.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
| |
Collapse
|
9
|
Rudrawar S, Dyason JC, Maggioni A, Thomson RJ, Itzstein MV. Novel 3,4-disubstituted-Neu5Ac2en derivatives as probes to investigate flexibility of the influenza virus sialidase 150-loop. Bioorg Med Chem 2013; 21:4820-30. [DOI: 10.1016/j.bmc.2013.05.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 04/17/2013] [Accepted: 05/28/2013] [Indexed: 10/26/2022]
|