1
|
Ahmad I, Kedhim M, Jadeja Y, Sangwan G, V K, Kashyap A, Shomurotova S, Kazemi M, Javahershenas R. A comprehensive review on carbonylation reactions: catalysis by magnetic nanoparticle-supported transition metals. NANOSCALE ADVANCES 2025; 7:3189-3209. [PMID: 40303976 PMCID: PMC12035756 DOI: 10.1039/d5na00040h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/13/2025] [Indexed: 05/02/2025]
Abstract
Magnetic catalysts have become a crucial innovation in carbonylation reactions, providing a sustainable and highly efficient means of synthesizing compounds that contain carbonyl groups. This review article explores the diverse and significant role of magnetic catalysts in various carbonylation processes, emphasizing their essential contributions to improving reaction rates, selectivity, and recyclability of catalysts. The distinctive magnetic properties of these catalysts enable straightforward separation and recovery, a feature that significantly mitigates waste and reduces environmental impact. As a result, magnetic catalysts' environmental and economic advantages position them as key players in contemporary synthetic chemistry, driving the evolution of green chemistry practices. Particularly noteworthy is the combination of magnetic nanoparticles with transition metals, resulting in the development of robust catalytic systems that exploit the complementary effects of magnetism and catalysis. Recent advances have showcased the adaptability of magnetic nanoparticles supported by transition metal catalysts in various carbonylation reactions, including carbonylative coupling, alkoxy carbonylation, thio carbonylation, and amino carbonylation. This review meticulously examines the mechanistic aspects of how magnetic fields influenced catalytic performance between 2014 and the end of 2024.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University Abha Saudi Arabia
| | - Munthar Kedhim
- College of Pharmacy, The Islamic University Najaf Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah Al Diwaniyah Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon Babylon Iraq
| | - Yashwantsinh Jadeja
- Marwadi University Research Center, Department of Chemistry, Faculty of Science, Marwadi University Rajkot 360003 Gujarat India
| | - Gargi Sangwan
- Chitkara Centre for Research and Development, Chitkara University Baddi Himachal Pradesh 174103 India
| | - Kavitha V
- Department of Chemistry, Sathyabama Institute of Science and Technology Chennai Tamil Nadu India
| | - Aditya Kashyap
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University Rajpura 140401 Punjab India
| | - Shirin Shomurotova
- Department of Chemistry Teaching Methods, Tashkent State Pedagogical University named after Nizami Bunyodkor Street 27 Tashkent Uzbekistan
| | - Mosstafa Kazemi
- Young Researchers and Elite Club, Islamic Azad University Tehran Branch Tehran Iran
| | | |
Collapse
|
2
|
Huang Z, Dong J, Liu P, Yin Y, Yi B, Fang Z, Jiang X, Li Y. Copper-Catalyzed Carbonylative Cyclization of CO 2: A Promising Approach for Synthesis of Flavone. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415795. [PMID: 39921264 PMCID: PMC11967808 DOI: 10.1002/advs.202415795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/21/2025] [Indexed: 02/10/2025]
Abstract
Flavones are an important class of building blocks for numerous biologically active molecules, pharmaceuticals, and natural products. Reductive carbonylation of CO2 is a powerful method to provide high-value heterocycles quickly. However, examples of transition metal-catalyzed carbonylation to produce flavones using CO2 are quite scarce, and the related copper-catalyzed carbonylative cyclization of CO2 is not reported. Here, a general procedure is developed for the copper-catalyzed carbonylative C(sp3)-H bond synthesis of flavone using CO2 as the C1 source. Additionally, 13C-labeled flavones are successfully synthesized using [13C]-CO2, demonstrating significant inhibitor activity against MCF-7 cells in antitumor assays. Mechanistic investigations suggest that the phenolic group accelerates CO2 mass transfer by promoting nucleophilic addition to DBU-CO2 complexes, followed by selective intramolecular carbonylative cyclization.
Collapse
Affiliation(s)
- Zijun Huang
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Rechemistry, College of Chemistry and Chemical EngineeringHunan Institute of EngineeringXiangtan411104P. R. China
| | - Junyong Dong
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Rechemistry, College of Chemistry and Chemical EngineeringHunan Institute of EngineeringXiangtan411104P. R. China
| | - Pengtao Liu
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Rechemistry, College of Chemistry and Chemical EngineeringHunan Institute of EngineeringXiangtan411104P. R. China
| | - Yadi Yin
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Rechemistry, College of Chemistry and Chemical EngineeringHunan Institute of EngineeringXiangtan411104P. R. China
| | - Bing Yi
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Rechemistry, College of Chemistry and Chemical EngineeringHunan Institute of EngineeringXiangtan411104P. R. China
| | - Zhengjun Fang
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Rechemistry, College of Chemistry and Chemical EngineeringHunan Institute of EngineeringXiangtan411104P. R. China
| | - Xiaolin Jiang
- School of PharmacyShanghai University of Medicine and Health SciencesShanghai201318P. R. China
| | - Yuehui Li
- College of Smart EnergyShanghai Jiao Tong UniversityShanghai200240P. R. China
- Carbon‐Negative Synthetic Biology for Biomaterial Production from CO2 (CNSB)Campus for Research Excellence and Technological Enterprise (CREATE)1 CREATE WaySingapore138602Singapore
| |
Collapse
|
3
|
Huang Z, Li Y, Zhou J, Zhang Y, Wu J, Wu Y, Zhang F, Fang Z, Li Y. Palladium-Catalyzed Carbonylation for General Synthesis of Aurones Using CO 2. CHEMSUSCHEM 2023; 16:e202202365. [PMID: 36737418 DOI: 10.1002/cssc.202202365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 05/20/2023]
Abstract
The carbonylation of alkynes using CO2 to generate aurones is to date unknown. In this study, a palladium-catalyzed carbonylation of terminal aromatic alkynes and the waste hydrosilane, poly(methylhydrosiloxane) (PMHS), is carried out with 2-iodophenol using CO2 to produce aurones. A variety of terminal alkynes and substituted 2-iodophenols are transformed into aurones in good yields. Preliminary mechanistic studies indicate that silyl formate, generated from CO2 and PMHS, plays a crucial role in the carbonylation reaction.
Collapse
Affiliation(s)
- Zijun Huang
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, 411104, Xiangtan, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Yudong Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Jiaxing Zhou
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, 411104, Xiangtan, P. R. China
| | - Yi Zhang
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, 411104, Xiangtan, P. R. China
| | - Jiacheng Wu
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, 411104, Xiangtan, P. R. China
| | - Yongkai Wu
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, 411104, Xiangtan, P. R. China
| | - Fan Zhang
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, 411104, Xiangtan, P. R. China
| | - Zhengjun Fang
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, 411104, Xiangtan, P. R. China
| | - Yuehui Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
4
|
Parallel Synthesis of Aurones Using a Homogeneous Scavenger. ORGANICS 2023. [DOI: 10.3390/org4010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The ability to synthesize arrays of related compounds quickly and with good purity has become critical for a rapid exploration of their properties for biological or material applications. While a number of methods have been developed to enable this combinatorial synthesis, the existing options were not readily appliable to the synthesis of aurones using the simple Knoevenagel condensation approach. In order to avoid the time, expense, and lowered yields associated with flash column chromatography, we developed a scavenging approach for their synthesis. This method uses an excess of aldehyde to ensure complete conversion to aurones, followed by selective removal of the remaining aldehyde using a simple, inexpensive scavenger – isoniazid – and subsequent extraction with dilute acid, to produce the desired compounds with good purity under operationally simple conditions. This approach is expected to be applicable to many other reactions involving aldehydes as one of the reactants.
Collapse
|
5
|
Theoretical study on the mechanism of the carbonylation cyclization of 1,5-diynes with hydrosilanes. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Lokolkar MS, Pal MK, Dey S, Bhanage BM. POP-Pincer Xantphos Pd Complex of 4-Pyridylthiolate: Cyclocarbonylative Reaction for the Synthesis of Flavones Using Cobalt Carbonyl as a C1 Source. Catal Letters 2022. [DOI: 10.1007/s10562-022-04161-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Synthesis of functionalized flavones from 3-halo-2-(methylthio)-4H-chromen-4-ones. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Wu XF, Yin H, Kuai CS, Chen B, Bao Z. Direct Carbonylative Difunctional of Terminal Alkynes with Sodium Sulfinates to Access Olefin Sulfonyl Methyl Esters under Metal-Free Conditions. Org Chem Front 2022. [DOI: 10.1039/d2qo01311h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal-free difunctional carbonylation procedure toward the synthesis of olefin sulfonyl methyl esters has been developed. By employing easily available terminal alkynes and sodium sulfinates as the starting materials, a...
Collapse
|
9
|
Aurones: A Golden Resource for Active Compounds. Molecules 2021; 27:molecules27010002. [PMID: 35011233 PMCID: PMC8746708 DOI: 10.3390/molecules27010002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Deemed as poorly represented in nature, aurones have been often overlooked by researchers compared to other members of the flavonoid superfamily. However, over the past two decades, they have been reassessed by the scientific community, who are increasingly appreciating their ability to modulate several biological pathways. This review summarizes the recent literature on this class of compounds, which has been analyzed from both a chemical and a functional point of view. Original articles, reviews and editorials featured in Pubmed and Scifinder over the last twenty years have been taken into account to provide the readers with a view of the chemical strategies to obtain them, their functional properties, and their potential of technological use. The resulting comprehensive picture aims at raising the awareness of these natural derivatives as effective drug candidates, fostering the development of novel synthetic analogues.
Collapse
|
10
|
Duan J, Xiong Z, Zhou Y, Yao W, Li X, Zhang M, Wang Z. Access to Chiral Chromenones through Organocatalyzed Mannich/Annulation Sequence. Org Lett 2021; 23:8007-8012. [PMID: 34606286 DOI: 10.1021/acs.orglett.1c03010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein we report an efficient and practical method to access chiral chromenones bearing one α-amino stereogenic center in the β position of the carbonyl group. The quinine-derived squaramide could efficiently promote Mannich/cycloketalization/dehydration tandem reactions between 1-(2-hydroxyaryl)-1,3-diketones and functionalized imines generated in situ, providing a wide range of chiral chromenones with propargylamine or α-amino ester moieties with good results (54 examples, up to 98% ee).
Collapse
Affiliation(s)
- Jingxiang Duan
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Zongli Xiong
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Weijun Yao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Xiaoyi Li
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Min Zhang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Zhen Wang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
11
|
In Lee J. A review of the syntheses of (thio)flavones,
4‐quinolones
, (thio)aurones, and azaaurones from 2′‐substituted alkynones. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jae In Lee
- Department of Chemistry, College of Science and Technology Duksung Women's University Seoul Republic of Korea
| |
Collapse
|
12
|
Mansour W, Fettouhi M, Saleem Q, El Ali B. Robust alkyl‐bridged bis(
N
‐heterocyclic carbene)palladium(II) complexes anchored on Merrifield's resin as active catalysts for the selective synthesis of flavones and alkynones. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Waseem Mansour
- Chemistry Department King Fahd University of Petroleum & Minerals Dhahran Saudi Arabia
| | - Mohammed Fettouhi
- Chemistry Department King Fahd University of Petroleum & Minerals Dhahran Saudi Arabia
| | - Qasim Saleem
- Research & Development Center Saudi Aramco Dhahran Saudi Arabia
| | - Bassam El Ali
- Chemistry Department King Fahd University of Petroleum & Minerals Dhahran Saudi Arabia
| |
Collapse
|
13
|
Mansour W, Fettouhi M, El Ali B. Regioselective Synthesis of Chromones via Cyclocarbonylative Sonogashira Coupling Catalyzed by Highly Active Bridged-Bis(N-Heterocyclic Carbene)Palladium(II) Complexes. ACS OMEGA 2020; 5:32515-32529. [PMID: 33376889 PMCID: PMC7758971 DOI: 10.1021/acsomega.0c04706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/27/2020] [Indexed: 05/08/2023]
Abstract
The one-pot regioselective and catalytic synthesis of bioactive chromones and flavones was achieved via phosphine-free cyclocarbonylative Sonogashira coupling reactions of 2-iodophenols with aryl alkynes, alkyl alkynes, and dialkynes. The reactions are catalyzed by new dibromidobis(NHC)palladium(II) complexes. The new bridged N,N'-substituted benzimidazolium salts (L1, L2, and L3) and their palladium complexes C1, C2, and C3 were designed, prepared, and fully characterized using different physical and spectroscopic techniques. The molecular structures of complexes C1 and C3 were determined by single-crystal X-ray diffraction analysis. They showed a distorted square planar geometry, where the Pd(II) ion is bonded to the carbon atoms of two cis NHC carbene ligands and two cis bromido anions. These complexes displayed a high catalytic activity in cyclocarbonylative Sonogashira coupling reactions with low catalyst loadings. The regioselectivity of these reactions was controlled by using diethylamine as the base and DMF as the solvent.
Collapse
|
14
|
Sui G, Li T, Zhang B, Wang R, Hao H, Zhou W. Recent advances on synthesis and biological activities of aurones. Bioorg Med Chem 2020; 29:115895. [PMID: 33271454 DOI: 10.1016/j.bmc.2020.115895] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022]
Abstract
Aurones are naturally occurring structural isomerides of flavones that have diverse bioactivities including antiviral, antibacterial, antifungal, anti-inflammatory, antitumor, antimalarial, antioxidant, neuropharmacological activities and so on. They constitute an important class of pharmacologically active scaffolds that exhibit multiple biological activities via diverse mechanisms. This review article provides an update on the recent advances (2013-2020.4) in the synthesis and biological activities of these derivatives. In the cases where sufficient information is available, some important structure-activity relationships (SAR) of their biological activities were presented, and on the strength of our expertise in medicinal chemistry and careful analysis of the recent literature, for the potential of aurones as medicinal drugs is proposed.
Collapse
Affiliation(s)
- Guoqing Sui
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Tian Li
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Bingyu Zhang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Ruizhi Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Hongdong Hao
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Wenming Zhou
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
15
|
Chen Z, Wang LC, Wu XF. Carbonylative synthesis of heterocycles involving diverse CO surrogates. Chem Commun (Camb) 2020; 56:6016-6030. [DOI: 10.1039/d0cc01504k] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent advances in the carbonylative synthesis of heterocycles by using diverse CO surrogates as sources of CO are summarized and discussed.
Collapse
Affiliation(s)
- Zhengkai Chen
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Le-Cheng Wang
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock
| |
Collapse
|
16
|
Liu J, Ba D, Chen Y, Wen S, Cheng G. Synthesis of 3-(2-quinolyl) chromones from ynones and quinoline N-oxides via tandem reactions under transition metal- and additive-free conditions. Chem Commun (Camb) 2020; 56:4078-4081. [DOI: 10.1039/c9cc09460a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The synthesis of 3-(2-quinolyl) chromones from ynones and quinoline N-oxides via a sequential [3+2] cycloaddition/ring-opening/O-arylation reaction under transition metal- and additive-free conditions is reported.
Collapse
Affiliation(s)
- Jing Liu
- College of Materials Science & Engineering
- Huaqiao University
- Xiamen 361021
- China
| | - Dan Ba
- College of Materials Science & Engineering
- Huaqiao University
- Xiamen 361021
- China
| | - Yanhui Chen
- College of Materials Science & Engineering
- Huaqiao University
- Xiamen 361021
- China
| | - Si Wen
- College of Materials Science & Engineering
- Huaqiao University
- Xiamen 361021
- China
| | - Guolin Cheng
- College of Materials Science & Engineering
- Huaqiao University
- Xiamen 361021
- China
| |
Collapse
|
17
|
Lee JI, Kim HN. Efficient Synthesis of (
Z
)‐Aurones by the Thallium(I) acetate‐Catalyzed 5‐
exo
Cyclization of
o
‐(Alkynon‐1‐yl)phenols. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jae In Lee
- Department of Chemistry, College of Natural ScienceDuksung Women's University Seoul 01369 Republic of Korea
| | - Han Nah Kim
- Department of Chemistry, College of Natural ScienceDuksung Women's University Seoul 01369 Republic of Korea
| |
Collapse
|
18
|
Chen B, Wu X. Palladium‐Catalyzed Carbonylative Synthesis of Benzosilinones from (2‐Iodophenyl)Hydrosilanes and Terminal Alkynes. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bo Chen
- Department of ChemistryZhejiang Sci-Tech University, Xiasha Campus Hangzhou 310018 People's Republic of China
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock Albert-Einstein-Straβe 29a 18059 Rostock Germany
| | - Xiao‐Feng Wu
- Department of ChemistryZhejiang Sci-Tech University, Xiasha Campus Hangzhou 310018 People's Republic of China
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock Albert-Einstein-Straβe 29a 18059 Rostock Germany
| |
Collapse
|
19
|
Xiang K, Tong P, Yan B, Long L, Zhao C, Zhang Y, Li Y. Synthesis of Benzannulated [6,6]-Spiroketals by a One-Pot Carbonylative Sonogashira Coupling/Double Annulation Reaction. Org Lett 2018; 21:412-416. [DOI: 10.1021/acs.orglett.8b03586] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kuirong Xiang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Pei Tong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Baorun Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Lingling Long
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chunbo Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ying Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
20
|
Chang MY, Chen HY, Tsai YL. Temperature-Controlled Desulfonylative Condensation of α-Sulfonyl o-Hydroxyacetophenones and 2-Formyl Azaarenes: Synthesis of Azaaryl Aurones and Flavones. J Org Chem 2018; 84:326-337. [DOI: 10.1021/acs.joc.8b02857] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Han-Yu Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Lin Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
21
|
Hajipour AR, Khorsandi Z, Fakhari F, Mortazavi M, Farrokhpour H. A Comparative Study between Co‐ and CoFe
2
O
4
‐NPs Catalytic Activities in Synthesis of Flavone Derivatives; Study of Their Interactions with Estrogen Receptor by Molecular Docking. ChemistrySelect 2018. [DOI: 10.1002/slct.201702702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Abdol R. Hajipour
- Department of ChemistryIsfahan University of Technology Isfahan 84156 Iran
- Department of NeuroscienceUniversity of WisconsinMedical School, Madison WI53706-1532 USA
| | - Zahra Khorsandi
- Department of ChemistryIsfahan University of Technology Isfahan 84156 Iran
| | - Farzaneh Fakhari
- Department of ChemistryIsfahan University of Technology Isfahan 84156 Iran
| | - Maryam Mortazavi
- Department of Chemical industryfaculty of Shiraz daughters branchtrchnical and vocational university (TVU) Shiraz 71454 Iran
| | | |
Collapse
|
22
|
Xu S, Sun H, Zhuang M, Zheng S, Jian Y, Zhang W, Gao Z. Divergent synthesis of flavones and aurones via base-controlled regioselective palladium catalyzed carbonylative cyclization. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
|
24
|
Yue Y, Peng J, Wang D, Bian Y, Sun P, Chen C. Synthesis of 4H-Chromen-4-one Derivatives by Intramolecular Palladium-Catalyzed Acylation of Alkenyl Bromides with Aldehydes. J Org Chem 2017; 82:5481-5486. [DOI: 10.1021/acs.joc.7b00640] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yixia Yue
- Department of Chemistry
and
Chemical Engineering, College of Science, Northeast Forestry University, Harbin 150040, P. R. China
| | - Jinsong Peng
- Department of Chemistry
and
Chemical Engineering, College of Science, Northeast Forestry University, Harbin 150040, P. R. China
| | - Deqiang Wang
- Department of Chemistry
and
Chemical Engineering, College of Science, Northeast Forestry University, Harbin 150040, P. R. China
| | - Yunyun Bian
- Department of Chemistry
and
Chemical Engineering, College of Science, Northeast Forestry University, Harbin 150040, P. R. China
| | - Peng Sun
- Department of Chemistry
and
Chemical Engineering, College of Science, Northeast Forestry University, Harbin 150040, P. R. China
| | - Chunxia Chen
- Department of Chemistry
and
Chemical Engineering, College of Science, Northeast Forestry University, Harbin 150040, P. R. China
| |
Collapse
|
25
|
|
26
|
Zhu F, Wang Z, Li Y, Wu XF. Iridium-Catalyzed and Ligand-Controlled Carbonylative Synthesis of Flavones from Simple Phenols and Internal Alkynes. Chemistry 2017; 23:3276-3279. [PMID: 28121387 DOI: 10.1002/chem.201700233] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Indexed: 01/30/2023]
Abstract
Flavones are important natural products with diverse biological activities. In this study, a novel procedure for the carbonylative synthesis of flavones has been developed by using simple phenols and internal alkynes as the substrates. Various flavones were isolated in moderate to good yields with excellent regioselectivity and functional group tolerance by using an iridium catalyst system. Notably, this is the first example of direct carbonylative annulation of non-preactivated phenols and alkynes to produce flavones, with the choice of ligand proving to be critical for the success of this transformation.
Collapse
Affiliation(s)
- Fengxiang Zhu
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Zechao Wang
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Yahui Li
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany.,Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou, 310018, P. R. China
| |
Collapse
|
27
|
The synthesis of 3-sulfenylflavones via FeCl3-promoted regioselective cyclization of alkynyl aryl ketones with N-arylthiobenzamides. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.11.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Chavan SP, Bishwa Bidita Varadwaj G, Parida KM, Bhanage BM. Solvent-Switchable Regioselective Synthesis of Aurones and Flavones Using Palladium-Supported Amine-Functionalized Montmorillonite as a Heterogeneous Catalyst. ChemCatChem 2016. [DOI: 10.1002/cctc.201600549] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sujit P. Chavan
- Department of Chemistry; Institute of Chemical Technology, N. Parekh Marg, Matunga; Mumbai- 400019 India
| | - G. Bishwa Bidita Varadwaj
- Centre for Nano Science and Nano Technology; ITER, SOA University, Jagamohan Nagar; Bhubaneswar- 751 030, Odisha India
| | - Kulamani M. Parida
- Centre for Nano Science and Nano Technology; ITER, SOA University, Jagamohan Nagar; Bhubaneswar- 751 030, Odisha India
| | - Bhalchandra M. Bhanage
- Department of Chemistry; Institute of Chemical Technology, N. Parekh Marg, Matunga; Mumbai- 400019 India
| |
Collapse
|
29
|
Qi X, Li R, Wu XF. Selective palladium-catalyzed carbonylative synthesis of aurones with formic acid as the CO source. RSC Adv 2016. [DOI: 10.1039/c6ra13615j] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A general and practical strategy has been developed to prepare aurone derivatives.
Collapse
Affiliation(s)
- Xinxin Qi
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Rui Li
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
- Leibniz-Institut für Katalyse e.V. an der Universit Rostock
| |
Collapse
|
30
|
Metal-free methodology for the preparation of sterically hindered alkynoylphenols and its application to the synthesis of flavones and aurones. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.05.097] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
31
|
Liu J, Song W, Yue Y, Liu R, Yi H, Zhuo K, Lei A. Pd(OAc)2/SPPh3 accelerated activation of gem-dichloroalkenes for the construction of 3-arylchromones. Chem Commun (Camb) 2015; 51:17576-9. [DOI: 10.1039/c5cc06334e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Pd-catalyzed regioselective intramolecular nucleophilic substitution of gem-dichloroalkene derivatives with salicylaldehydes leading to the synthesis of 3-arylchromones has been developed.
Collapse
Affiliation(s)
- Jianming Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Weiwei Song
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Yuanyuan Yue
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Ren Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Hong Yi
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- P. R. China
| | - Kelei Zhuo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- P. R. China
| |
Collapse
|
32
|
Narayan R, Antonchick AP. Hypervalent Iodine-Mediated Selective Oxidative Functionalization of (Thio)chromones with Alkanes. Chemistry 2014; 20:4568-72. [DOI: 10.1002/chem.201400186] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Indexed: 11/11/2022]
|