1
|
DeYong AE, Trinidad JC, Pohl NLB. An identification method to distinguish monomeric sugar isomers on glycopeptides. Analyst 2023; 148:4438-4446. [PMID: 37555458 DOI: 10.1039/d3an01036h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
A one-step protocol for the automated flow synthesis of protected glycosylated amino acids is described using pumps with open-source controls in overall yields of 21-50%. The resulting glycosylated amino acids could be used directly in solid-phase peptide synthesis (SPPS) protocols to quickly produce glycopeptide standards. Access to a variety of stereoisomers of the sugar enabled the development of an LC-MS/MS protocol that can distinguish between peptides modified with carbohydrates having the same exact mass. This method could definitively identify fucose in an O-glycosylation site on the transmembrane protein, Notch1.
Collapse
Affiliation(s)
- Ashley E DeYong
- Chemistry, Indiana University, 212 S Hawthorne Dr., Bloomington, IN 47405, USA.
| | - Jonathan C Trinidad
- Chemistry, Indiana University, 212 S Hawthorne Dr., Bloomington, IN 47405, USA.
| | - Nicola L B Pohl
- Chemistry, Indiana University, 212 S Hawthorne Dr., Bloomington, IN 47405, USA.
| |
Collapse
|
2
|
Luo T, Zhang Q, Guo YF, Pei ZC, Dong H. Efficient Preparation of 2‐SAc‐Glycosyl Donors and Investigation of Their Application in Synthesis of 2‐Deoxyglycosides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tao Luo
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry & Chemical Engineering Luoyu Road 1037 430074 Wuhan CHINA
| | - Qiang Zhang
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry & Chemical Engineering CHINA
| | - Yang-Fan Guo
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry & Chemical Engineering CHINA
| | - Zhi-Chao Pei
- Northwest Agriculture and Forestry University College of Chemistry and Pharmacy CHINA
| | - Hai Dong
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology School of Chemistry & Chemical Engineering Luoyu Road 1037 430074 Wuhan CHINA
| |
Collapse
|
3
|
Li Y, Ma B, Li X, Shang S, Tan Z. Development of a Glycoform Library-based Strategy to Decipher the Role of Protein Glycosylation. Methods Mol Biol 2022; 2530:195-211. [PMID: 35761051 DOI: 10.1007/978-1-0716-2489-0_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glycoproteins obtained from cell culture supernatants or lysates generally exist as mixtures of over 100 differently glycosylated protein forms (glycoforms). The study of glycosylation is significantly impeded because of the heterogeneous nature of glycoproteins. To overcome this challenge, we developed and optimized a glycoform library-based strategy to investigate the role of protein glycosylation. In this strategy, chemical synthesis was used to prepare individual homogeneous glycoforms and the role of glycosylation was determined by comparing a series of glycoforms with systematic differences in their glycosylation patterns.
Collapse
Affiliation(s)
- Yaohao Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shiying Shang
- Center of Pharmaceutical Technology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
| | - Zhongping Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Li Y, Guan X, Chaffey PK, Ruan Y, Ma B, Shang S, Himmel ME, Beckham GT, Long H, Tan Z. Carbohydrate-binding module O-mannosylation alters binding selectivity to cellulose and lignin. Chem Sci 2020; 11:9262-9271. [PMID: 34123172 PMCID: PMC8163390 DOI: 10.1039/d0sc01812k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Improved understanding of the effect of protein glycosylation is expected to provide the foundation for the design of protein glycoengineering strategies. In this study, we examine the impact of O-glycosylation on the binding selectivity of a model Family 1 carbohydrate-binding module (CBM), which has been shown to be one of the primary sub-domains responsible for non-productive lignin binding in multi-modular cellulases. Specifically, we examine the relationship between glycan structure and the binding specificity of the CBM to cellulose and lignin substrates. We find that the glycosylation pattern of the CBM exhibits a strong influence on the binding affinity and the selectivity between both cellulose and lignin. In addition, the large set of binding data collected allows us to examine the relationship between binding affinity and the correlation in motion between pairs of glycosylation sites. Our results suggest that glycoforms displaying highly correlated motion in their glycosylation sites tend to bind cellulose with high affinity and lignin with low affinity. Taken together, this work helps lay the groundwork for future exploitation of glycoengineering as a tool to improve the performance of industrial enzymes. Improved understanding of the effect of protein glycosylation is expected to provide the foundation for the design of protein glycoengineering strategies.![]()
Collapse
Affiliation(s)
- Yaohao Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China .,Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder CO 80303 USA
| | - Xiaoyang Guan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder CO 80303 USA
| | - Patrick K Chaffey
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder CO 80303 USA
| | - Yuan Ruan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder CO 80303 USA
| | - Bo Ma
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Shiying Shang
- School of Pharmaceutical Sciences, Tsinghua University Beijing 100084 China
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory Golden CO 80401 USA
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory Golden CO 80401 USA
| | - Hai Long
- Computational Science Center, National Renewable Energy Laboratory Golden CO 80401 USA
| | - Zhongping Tan
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| |
Collapse
|
5
|
Wang H, Liu Z, An C, Li H, Hu F, Dong S. Self-Assembling Glycopeptide Conjugate as a Versatile Platform for Mimicking Complex Polysaccharides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001264. [PMID: 32832369 PMCID: PMC7435236 DOI: 10.1002/advs.202001264] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Polysaccharides are a class of carbohydrates that play pivotal roles in living systems such as being chemical messengers in many vital biological pathways. However, the complexity and heterogeneity of these natural structures have posed daunting challenges on their production, characterization, evaluation, and applications. While there have been various types of synthetic skeletons that could mimic some biological aspects of polysaccharides, a safer and more easily accessed system is still desired to avoid the unnatural components and difficulties in modifying the structures. In this work, conveniently accessible self-assembling glycopeptide conjugates are developed, where the natural O-glycosidic linkages and phosphoryl modifications assist the self-assembly and concurrently reduce the risk of toxicity. The generated nanoparticles in aqueous solution offer a multivalent display of structurally controllable carbohydrates as mimics of polysaccharides, among which a mannosylated version exhibits immunostimulatory effects in both cellular assays and vaccination of mice. The obtained results demonstrate the potential of this glycopeptide conjugate-derived platform in exploiting the intriguing properties of carbohydrates in a more structurally maneuverable fashion.
Collapse
Affiliation(s)
- Hanxuan Wang
- State Key Laboratory of Natural and Biomimetic Drugsand Department of Chemical BiologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Zhichao Liu
- State Key Laboratory of Natural and Biomimetic Drugsand Department of Chemical BiologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Chuanjing An
- State Key Laboratory of Natural and Biomimetic Drugsand Department of Chemical BiologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Haoting Li
- State Key Laboratory of Natural and Biomimetic Drugsand Department of Chemical BiologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Fanlei Hu
- Department of Rheumatology and ImmunologyPeking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135)Beijing100044China
| | - Suwei Dong
- State Key Laboratory of Natural and Biomimetic Drugsand Department of Chemical BiologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| |
Collapse
|
6
|
|
7
|
Hamon N, Mouline CC, Travert M. Synthesis of Mannosylglycerate Derivatives as Immunostimulating Agents. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nadège Hamon
- Kercells Biosciences; 45 rue Clemenceau - CS 30300 29403 Landivisiau CEDEX France
| | - Caroline C. Mouline
- Kercells Biosciences; 45 rue Clemenceau - CS 30300 29403 Landivisiau CEDEX France
| | - Marion Travert
- Kercells Biosciences; 45 rue Clemenceau - CS 30300 29403 Landivisiau CEDEX France
| |
Collapse
|
8
|
Sedaghat B, Stephenson RJ, Giddam AK, Eskandari S, Apte SH, Pattinson DJ, Doolan DL, Toth I. Synthesis of Mannosylated Lipopeptides with Receptor Targeting Properties. Bioconjug Chem 2016; 27:533-48. [PMID: 26735314 DOI: 10.1021/acs.bioconjchem.5b00547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Present on the surface of antigen presenting cells (APCs), the mannose receptor (MR) has long been recognized as a front-line receptor in pathogen recognition. During the past decade many attempts have been made to target this receptor for applications including vaccine and drug development. In the present study, a library of vaccine constructs comprising fluorescently labeled mannosylated lipid-dendrimers that contained the ovalbumin CD4(+) epitope, OVA(323-339), as the model peptide antigen were synthesized using fluorenylmethyloxycarbonyl (Fmoc) solid phase peptide synthesis (SPPS). The vaccine constructs were designed with an alanine spacer between the O-linked mannose moieties to investigate the impact of distance between the mannose units on receptor-mediated uptake and/or binding in APCs. Uptake studies performed on F4/80(+) and CD11c(+) cells showed significant uptake and/or binding for lipopeptides containing mannose, and also the lipopeptide without mannose when compared to the control peptides (peptide with no lipid and peptide with no mannose and no lipid). Furthermore, mannan inhibition assays demonstrated that uptake of the mannosylated and lipidated peptides was receptor mediated. To address the specificity of receptor uptake, surface plasmon resonance studies were performed using biacore technology and confirmed high affinity of the mannosylated and lipidated vaccine constructs toward the MR. These studies confirm that both mannose and lipid moieties play significant roles in receptor-mediated uptake on APCs, potentially facilitating vaccine development.
Collapse
Affiliation(s)
| | | | | | | | - Simon H Apte
- Infectious Diseases Program, QIMR Berghofer Medical Research Institute , Brisbane, Queensland 4029, Australia
| | - David J Pattinson
- Infectious Diseases Program, QIMR Berghofer Medical Research Institute , Brisbane, Queensland 4029, Australia
| | - Denise L Doolan
- Infectious Diseases Program, QIMR Berghofer Medical Research Institute , Brisbane, Queensland 4029, Australia
| | - Istvan Toth
- School of Pharmacy, The University of Queensland , Woolloongabba, Queensland 4012, Australia
| |
Collapse
|
9
|
Specificity of O-glycosylation in enhancing the stability and cellulose binding affinity of Family 1 carbohydrate-binding modules. Proc Natl Acad Sci U S A 2014; 111:7612-7. [PMID: 24821760 DOI: 10.1073/pnas.1402518111] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The majority of biological turnover of lignocellulosic biomass in nature is conducted by fungi, which commonly use Family 1 carbohydrate-binding modules (CBMs) for targeting enzymes to cellulose. Family 1 CBMs are glycosylated, but the effects of glycosylation on CBM function remain unknown. Here, the effects of O-mannosylation are examined on the Family 1 CBM from the Trichoderma reesei Family 7 cellobiohydrolase at three glycosylation sites. To enable this work, a procedure to synthesize glycosylated Family 1 CBMs was developed. Subsequently, a library of 20 CBMs was synthesized with mono-, di-, or trisaccharides at each site for comparison of binding affinity, proteolytic stability, and thermostability. The results show that, although CBM mannosylation does not induce major conformational changes, it can increase the thermolysin cleavage resistance up to 50-fold depending on the number of mannose units on the CBM and the attachment site. O-Mannosylation also increases the thermostability of CBM glycoforms up to 16 °C, and a mannose disaccharide at Ser3 seems to have the largest themostabilizing effect. Interestingly, the glycoforms with small glycans at each site displayed higher binding affinities for crystalline cellulose, and the glycoform with a single mannose at each of three positions conferred the highest affinity enhancement of 7.4-fold. Overall, by combining chemical glycoprotein synthesis and functional studies, we show that specific glycosylation events confer multiple beneficial properties on Family 1 CBMs.
Collapse
|
10
|
Pourcelot M, Cattiaux L, Sfihi-Loualia G, Fabre E, Krzewinski F, Fradin C, Poulain D, Delplace F, Guérardel Y, Mallet JM. Mantyl tagged oligo α (1 → 2) mannosides as Candida albicans β-mannosyl transferases substrates: a comparison between synthetic strategies. RSC Adv 2013. [DOI: 10.1039/c3ra43340d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|