1
|
Gorai S, Junghare V, Kundu K, Gharui S, Kumar M, Patro BS, Nayak SK, Hazra S, Mula S. Synthesis of Dihydrobenzofuro[3,2-b]chromenes as a potential 3CLpro inhibitors of SARS-CoV-2: A molecular docking and dynamics simulation study. ChemMedChem 2022; 17:e202100782. [PMID: 35112482 PMCID: PMC9015348 DOI: 10.1002/cmdc.202100782] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 11/29/2022]
Abstract
The recent emergence of pandemic of coronavirus (COVID‐19) caused by SARS‐CoV‐2 has raised significant global health concerns. More importantly, there is no specific therapeutics currently available to combat against this deadly infection. The enzyme 3‐chymotrypsin‐like cysteine protease (3CLpro) is known to be essential for viral life cycle as it controls the coronavirus replication. 3CLpro could be a potential drug target as established before in the case of severe acute respiratory syndrome coronavirus (SARS‐CoV) and Middle East respiratory syndrome coronavirus (MERS‐CoV). In the current study, we wanted to explore the potential of fused flavonoids as 3CLpro inhibitors. Fused flavonoids (5a,10a‐dihydro‐11H‐benzofuro[3,2‐b]chromene) are unexplored for their potential bioactivities due to their low natural occurrences. Their synthetic congeners are also rare due to unavailability of general synthetic methodology. Here we designed a simple strategy to synthesize 5a,10a‐dihydro‐11H‐benzofuro[3,2‐b]chromene skeleton and it's four novel derivatives. Our structural bioinformatics study clearly shows excellent potential of the synthesized compounds in comparison to experimentally validated inhibitor N3. Moreover, in‐silico ADMET study displays excellent druggability and extremely low level of toxicity of the synthesized molecules. Further, for better understanding, the molecular dynamic approach was implemented to study the change in dynamicity after the compounds bind to the protein. A detailed investigation through clustering analysis and distance calculation gave us sound comprehensive data about their molecular interaction. In summary, we anticipate that the currently synthesized molecules could not only be a potential set of inhibitors against 3CLpro but also the insights acquired from the current study would be instrumental in further developing novel natural flavonoid based anti‐COVID therapeutic spectrums.
Collapse
Affiliation(s)
- Sudip Gorai
- Bhabha Atomic Research Centre, Department of Atomic Energy, INDIA
| | - Vivek Junghare
- IIT Roorkee: Indian Institute of Technology Roorkee, Biotechnology, INDIA
| | - Kshama Kundu
- Bhabha Atomic Research Centre, Department of Atomic Energy, INDIA
| | | | - Mukesh Kumar
- Bhabha Atomic Research Centre, Department of Atomic Energy, INDIA
| | | | - Sandip K Nayak
- Bhabha Atomic Research Centre, Department of Atomic Energy, INDIA
| | - Saugata Hazra
- IIT Roorkee: Indian Institute of Technology Roorkee, Biotechnology, INDIA
| | - Soumyaditya Mula
- Bhabha Atomic Research Centre, Bio-Organic Division, 1-28H, Modular Laboratory, 400085, Mumbai, INDIA
| |
Collapse
|
3
|
Denmark SE, Kornfilt DJP. Catalytic, Enantioselective, Intramolecular Sulfenofunctionalization of Alkenes with Phenols. J Org Chem 2017; 82:3192-3222. [PMID: 28257203 PMCID: PMC5360160 DOI: 10.1021/acs.joc.7b00295] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The catalytic, enantioselective, cyclization of phenols with electrophilic sulfenophthalimides onto isolated or conjugated alkenes affords 2,3-disubstituted benzopyrans and benzoxepins. The reaction is catalyzed by a BINAM-based phosphoramide Lewis base catalyst which assists in the highly enantioselective formation of a thiiranium ion intermediate. The influence of nucleophile electron density, alkene substitution pattern, tether length and Lewis base functional groups on the rate, enantio- and site-selectivity for the cyclization is investigated. The reaction is not affected by the presence of substituents on the phenol ring. In contrast, substitutions around the alkene strongly affect the reaction outcome. Sequential lengthening of the tether results in decreased reactivity, which necessitated increased temperatures for reaction to occur. Sterically bulky aryl groups on the sulfenyl moiety prevented erosion of enantiomeric composition at these elevated temperatures. Alcohols and carboxylic acids preferentially captured thiiranium ions in competition with phenolic hydroxyl groups. An improved method for the selective C(2) allylation of phenols is also described.
Collapse
Affiliation(s)
- Scott E Denmark
- Roger Adams Laboratory, Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| | - David J P Kornfilt
- Roger Adams Laboratory, Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Yuan H, Bi KJ, Li B, Yue RC, Ye J, Shen YH, Shan L, Jin HZ, Sun QY, Zhang WD. Construction of 2-Substituted-3-Functionalized Benzofurans via Intramolecular Heck Coupling: Application to Enantioselective Total Synthesis of Daphnodorin B. Org Lett 2013; 15:4742-5. [DOI: 10.1021/ol4021095] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Hu Yuan
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China, and Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Kai-Jian Bi
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China, and Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Bo Li
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China, and Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Rong-Cai Yue
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China, and Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ji Ye
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China, and Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yun-Heng Shen
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China, and Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lei Shan
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China, and Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Hui-Zi Jin
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China, and Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Qing-Yan Sun
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China, and Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wei-Dong Zhang
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China, and Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|