1
|
Chung J, Capani JS, Göhl M, Roosen PC, Vanderwal CD. Enantioselective Syntheses of Wickerols A and B. J Am Chem Soc 2023; 145:6486-6497. [PMID: 36883956 PMCID: PMC10037325 DOI: 10.1021/jacs.3c00448] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The evolution of a successful strategy for the synthesis of the strained, cage-like antiviral diterpenoids wickerols A and B is described. Initial attempts to access the carbocyclic core were surprisingly challenging and in retrospect, presaged the many detours needed to ultimately arrive at the fully adorned wickerol architecture. In most cases, conditions to trigger desired outcomes with respect to both reactivity and stereochemistry were hard-won. The successful synthesis ultimately leveraged alkenes in virtually all productive bond-forming events. A series of conjugate addition reactions generated the fused tricyclic core, a Claisen rearrangement was used to install an otherwise unmanageable methyl-bearing stereogenic center, and a Prins cyclization closed the strained bridging ring. This final reaction proved enormously interesting because the strain of the ring system permitted diversion of the presumed initial Prins product into several different scaffolds.
Collapse
Affiliation(s)
- Jonathan Chung
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Joseph S Capani
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Matthias Göhl
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Philipp C Roosen
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Christopher D Vanderwal
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
- Department of Pharmaceutical Sciences, University of California, Irvine, 101 Theory #100, Irvine, California 92617, United States
| |
Collapse
|
2
|
Catalytic Enantioselective Diels Alder Reaction: Application in the Synthesis of Antiviral Agents. Catalysts 2022. [DOI: 10.3390/catal12020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The Diels–Alder reaction (DAR) is one of the most effective and reliable strategies for the construction of six-membered carbocyclic and heterocyclic rings, and it is widely used in the synthesis of organic molecules and drugs. Due to the high regio- and stereo-selectivity and its versatility, DARs have represented a powerful tool for organic chemistry for many years. In addition, the asymmetric DAR has become a fundamental synthetic approach in the preparation of optically active six-membered rings and natural compounds. The COVID-19-related pandemic requires continuous research; DAR represents an useful method to obtain optically active intermediates for the synthesis of antiviral agents under different catalytic conditions. We would like to highlight an intriguing synthetic procedure applied to the development of novel synthetic protocols that are potentially useful against a large panel of viruses and other unmet diseases.
Collapse
|
3
|
Deng J, Ning Y, Tian H, Gui J. Divergent Synthesis of Antiviral Diterpenes Wickerols A and B. J Am Chem Soc 2020; 142:4690-4695. [PMID: 32073850 DOI: 10.1021/jacs.9b11838] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Wickerols A and B are diterpene natural products that have a novel fused 6-5-6-6 ring framework and exhibit potent antiviral activity against the H1N1 type A influenza virus. Herein, we report a divergent synthesis of wickerols A and B in 16 and 15 steps, respectively, from commercial sitolactone. The key reactions of the synthesis are a SmI2-mediated intramolecular ketone-allylic acetate reductive cyclization, a Claisen rearrangement, and an intramolecular alkylation/aldol reaction that rapidly assembled the compact tetracyclic core framework in a stereocontrolled manner. The work described herein allowed us to confirm the absolute configurations of wickerols A and B.
Collapse
Affiliation(s)
- Jiachen Deng
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yuhan Ning
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Hailong Tian
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jinghan Gui
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
4
|
Abstract
Prominent in the current stage of drug development, antiviral compounds can be efficiently prepared through cycloaddition reactions. The chapter reports the use of classical Diels–Alder and their hetero version for the design and synthesis of compounds that were tested for their antiviral activities against a variety of viruses. Furthermore, 1,3-dipolar cycloaddition reactions of selected 1,3-dipoles, such as azides, nitrones, and nitrile oxides, are reviewed in the light of their application in the preparation of key intermediates for antiviral synthesis. A few examples of [2+2] cycloaddition reactions are also presented. The products obtained from these pericyclic reaction approaches were all tested for their activities in terms of blocking the virus replication, and the relevant biological data are highlighted.
Collapse
|
5
|
Affiliation(s)
- Shu-An Liu
- Department
of Chemistry and Center for Integrated Protein Science, Ludwig-Maximilian University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Dirk Trauner
- Department
of Chemistry and Center for Integrated Protein Science, Ludwig-Maximilian University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
6
|
Islam MT, da Mata AMOF, de Aguiar RPS, Paz MFCJ, de Alencar MVOB, Ferreira PMP, de Carvalho Melo-Cavalcante AA. Therapeutic Potential of Essential Oils Focusing on Diterpenes. Phytother Res 2016; 30:1420-44. [PMID: 27307034 DOI: 10.1002/ptr.5652] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 12/20/2022]
Abstract
Among all plant derivates, essential oils (EOs) have gained the attention of many scientists. Diterpenes, a family of components present in some EO, are becoming a milestone in the EOs world. The goal of this review is to describe a scenario of diterpenes taking into health-consumption deportment. Previous studies revealed that diterpenes have antioxidant, antimicrobial, antiviral, antiprotozoal, cytotoxic, anticancer, antigenotoxic, antimutagenic, chemopreventive, antiinflammatory, antinociceptive, immunostimulatory, organoprotective, antidiabetic, lipid-lowering, antiallergic, antiplatelet, antithrombotic, and antitoxin activities. In conclusion, diterpenes may be an immense featuring concern in pharmaceutical consumption from a drug discovery point of view. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Md Torequl Islam
- Northeast Biotechnology Network (RENORBIO), Post-graduation Program in Biotechnology, Federal University of Piauí, Teresina, 64.049-550, Brazil.,Post-graduation Program in Pharmaceutical Science, Federal University of Piauí, Teresina, 64.049-550, Brazil.,Department of Pharmacy, Southern University Bangladesh, 22-Shahid Mirza Lane (E), Academic Building-II, 1st floor, 739/A, Mehedibag Road, Mehedibag-4000, Chittagong, Bangladesh
| | | | - Raí Pablo Sousa de Aguiar
- Post-graduation Program in Pharmaceutical Science, Federal University of Piauí, Teresina, 64.049-550, Brazil
| | - Marcia Fernanda Correia Jardim Paz
- Northeast Biotechnology Network (RENORBIO), Post-graduation Program in Biotechnology, Federal University of Piauí, Teresina, 64.049-550, Brazil.,Post-graduation Program in Pharmaceutical Science, Federal University of Piauí, Teresina, 64.049-550, Brazil
| | - Marcus Vinícius Oliveira Barros de Alencar
- Northeast Biotechnology Network (RENORBIO), Post-graduation Program in Biotechnology, Federal University of Piauí, Teresina, 64.049-550, Brazil.,Post-graduation Program in Pharmaceutical Science, Federal University of Piauí, Teresina, 64.049-550, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Northeast Biotechnology Network (RENORBIO), Post-graduation Program in Biotechnology, Federal University of Piauí, Teresina, 64.049-550, Brazil.,Post-graduation Program in Pharmaceutical Science, Federal University of Piauí, Teresina, 64.049-550, Brazil.,Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64.049-550, Brazil
| | - Ana Amélia de Carvalho Melo-Cavalcante
- Northeast Biotechnology Network (RENORBIO), Post-graduation Program in Biotechnology, Federal University of Piauí, Teresina, 64.049-550, Brazil.,Post-graduation Program in Pharmaceutical Science, Federal University of Piauí, Teresina, 64.049-550, Brazil
| |
Collapse
|