1
|
Dobrynin SA, Gulman MM, Morozov DA, Zhurko IF, Taratayko AI, Sotnikova YS, Glazachev YI, Gatilov YV, Kirilyuk IA. Synthesis of Sterically Shielded Nitroxides Using the Reaction of Nitrones with Alkynylmagnesium Bromides. Molecules 2022; 27:molecules27217626. [PMID: 36364453 PMCID: PMC9654931 DOI: 10.3390/molecules27217626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Sterically shielded nitroxides, which demonstrate high resistance to bioreduction, are the spin labels of choice for structural studies inside living cells using pulsed EPR and functional MRI and EPRI in vivo. To prepare new sterically shielded nitroxides, a reaction of cyclic nitrones, including various 1-pyrroline-1-oxides, 2,5-dihydroimidazole-3-oxide and 4H-imidazole-3-oxide with alkynylmagnesium bromide wereused. The reaction gave corresponding nitroxides with an alkynyl group adjacent to the N-O moiety. The hydrogenation of resulting 2-ethynyl-substituted nitroxides with subsequent re-oxidation of the N-OH group produced the corresponding sterically shielded tetraalkylnitroxides of pyrrolidine, imidazolidine and 2,5-dihydroimidazole series. EPR studies revealed large additional couplings up to 4 G in the spectra of pyrrolidine and imidazolidine nitroxides with substituents in 3- and/or 4-positions of the ring.
Collapse
Affiliation(s)
- Sergey A. Dobrynin
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia
- Correspondence: (S.A.D.); (D.A.M.)
| | - Mark M. Gulman
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova Str. 2, 630090 Novosibirsk, Russia
| | - Denis A. Morozov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia
- Correspondence: (S.A.D.); (D.A.M.)
| | - Irina F. Zhurko
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia
| | - Andrey I. Taratayko
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova Str. 2, 630090 Novosibirsk, Russia
| | - Yulia S. Sotnikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia
| | - Yurii I. Glazachev
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Institutskaya 3, 630090 Novosibirsk, Russia
| | - Yuri V. Gatilov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia
| | - Igor A. Kirilyuk
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia
| |
Collapse
|
2
|
Babić N, Orio M, Peyrot F. Unexpected rapid aerobic transformation of 2,2,6,6-tetraethyl-4-oxo(piperidin-1-yloxyl) radical by cytochrome P450 in the presence of NADPH: Evidence against a simple reduction of the nitroxide moiety to the hydroxylamine. Free Radic Biol Med 2020; 156:144-156. [PMID: 32561320 DOI: 10.1016/j.freeradbiomed.2020.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/29/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
Abstract
Aminoxyl radicals (nitroxides) are a class of compounds with important biomedical applications, serving as antioxidants, spin labels for proteins, spin probes of oximetry, pH, or redox status in electron paramagnetic resonance (EPR), or as contrast agents in magnetic resonance imaging (MRI). However, the fast reduction of the radical moiety in common tetramethyl-substituted cyclic nitroxides within cells, yielding diamagnetic hydroxylamines, limits their use in spectroscopic and imaging studies. In vivo half-lives of commonly used tetramethyl-substituted nitroxides span no more than a few minutes. Therefore, synthetic efforts have focused on enhancing the nitroxide stability towards reduction by varying the electronic and steric environment of the radical. Tetraethyl-substitution at alpha position to the aminoxyl function proved efficient in vitro against reduction by ascorbate or cytosolic extracts. Moreover, 2,2,6,6-tetraethyl-4-oxo(piperidin-1-yloxyl) radical (TEEPONE) was used successfully for tridimensional EPR and MRI in vivo imaging of mouse head, with a reported half-life of over 80 min. We decided to investigate the stability of tetraethyl-substituted piperidine nitroxides in the presence of hepatic microsomal fractions, since no detailed study of their "metabolic stability" at the molecular level had been reported despite examples of the use of these nitroxides in vivo. In this context, the rapid aerobic transformation of TEEPONE observed in the presence of rat liver microsomal fractions and NADPH was unexpected. Combining EPR, HPLC-HRMS, and DFT studies on a series of piperidine nitroxides - TEEPONE, 4-oxo-2,2,6,6-tetramethyl(piperidin-1-yloxyl) (TEMPONE), and 2,2,6,6-tetraethyl-4-hydroxy(piperidin-1-yloxyl) (TEEPOL), we propose that the rapid loss in paramagnetic character of TEEPONE is not due to reduction to hydroxylamine but is a consequence of carbon backbone modification initiated by hydrogen radical abstraction in alpha position to the carbonyl by the P450-Fe(V)=O species. Besides, hydrogen radical abstraction by P450 on ethyl substituents, leading to dehydrogenation or hydroxylation products, leaves the aminoxyl function intact but could alter the linewidth of the EPR signal and thus interfere with methods relying on measurement of this parameter (EPR oximetry).
Collapse
Affiliation(s)
- Nikola Babić
- Université de Paris, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, CNRS, F-75006, Paris, France
| | - Maylis Orio
- Aix-Marseille Univ., CNRS, Centrale Marseille, ISm2, Marseille, France
| | - Fabienne Peyrot
- Université de Paris, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, CNRS, F-75006, Paris, France; Sorbonne Université, Institut National Supérieur Du Professorat et de L'Éducation (INSPE) de L'Académie de Paris, F-75016, Paris, France.
| |
Collapse
|
3
|
New synthetic route to 2,2,6,6-tetraethylpiperidin-4-one: A key-intermediate towards tetraethyl nitroxides. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Emoto MC, Sasaki K, Maeda K, Fujii HG, Sato S. Synthesis and Evaluation as a Blood-Brain Barrier-Permeable Probe of 7-N-(PROXYL-3-yl-methyl)theophylline. Chem Pharm Bull (Tokyo) 2019; 66:887-891. [PMID: 30175747 DOI: 10.1248/cpb.c18-00333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The drug-nitroxide radical hybrid-compound 7-N-((2,2,5,5-tetramethylpyrrolidine-1-yloxy(PROXYL))-3-yl-methyl)theophylline (3) was synthesized by coupling 7-N-tosyltheophylline with 3-hydroxymethyl-PROXYL, HMP). The stability of 3 relative to that of HMP was examined in the presence of the anti-oxidant, ascorbic acid (AsA). The initial reduction rate constants of 3 and HMP were 11.9±5.3 and 6.1±5.2 M-1 min-1, respectively. In the presence of glutathione (GSH), these constants increased slightly to 22.3±6.8 and 9.1±2.4 M-1 min-1, respectively. Two-dimensional cranial electron paramagnetic resonance imaging of mice intravenously injected with 3 via the tail vein revealed that probe 3 enters the mouse brain by passing through the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- Miho C Emoto
- Center for Medical Education, Sapporo Medical University
| | - Kota Sasaki
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University
| | - Koya Maeda
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University
| | | | - Shingo Sato
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University
| |
Collapse
|
5
|
Sengoku T, Ikeda I, Ai K, Takahashi M, Yoda H. Indium- and zinc-catalyzed enantioselective amide propargylation of aldehydes with stannylated allenyl amides. Org Biomol Chem 2019; 17:2614-2618. [PMID: 30762059 DOI: 10.1039/c9ob00040b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The catalytic enantioselective propargylation of aldehydes with newly prepared stannyl allenyl amides is described. The reaction has been accomplished by using catalytic amounts of indium chloride, zinc chloride, and a chiral BINOL derivative, affording amide-functionalized homopropargyl alcohols in excellent yields and enantioselectivities.
Collapse
Affiliation(s)
- Tetsuya Sengoku
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan.
| | | | | | | | | |
Collapse
|
6
|
Poprac P, Poliak P, Kavala M, Barbieriková Z, Zalibera M, Fronc M, Švorc Ľ, Vihonská Z, Olejníková P, Lušpai K, Lukeš V, Brezová V, Szolcsányi P. Polyradical PROXYL/TEMPO-Derived Amides: Synthesis, Physicochemical Studies, DFT Calculations, and Antimicrobial Activity. Chempluschem 2017; 82:1326-1340. [PMID: 31957189 DOI: 10.1002/cplu.201700343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/18/2017] [Indexed: 01/09/2023]
Abstract
A series of polynitroxide amides possessing 2,2,5,5-tetramethyl-1-pyrrolidinyloxy (PROXYL) and/or 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) units connected through various bridges were synthesized and their properties were analyzed. EPR spectroscopy provided detailed insight into their paramagnetic character and related properties. A thorough examination of the EPR spectra of dinitroxides in organic solvents provided valuable information on the intramolecular motions, thermodynamics, and spin-exchange mechanisms. Analysis of low-temperature X- and Q-band EPR spectra of the dissolved dinitroxides provided spin-spin distances that were comparable with the theoretical values obtained by DFT. Cyclic voltammetry investigations revealed (quasi)reversible electrochemical behavior for PROXYL-derived biradicals, whereas significant loss of the reversibility was found for TEMPO-containing bi- and polyradicals. The inhibitory activities of the nitroxides against model bacteria, yeasts, and filamentous fungi were assessed.
Collapse
Affiliation(s)
- Patrik Poprac
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovakia
| | - Peter Poliak
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovakia
| | - Miroslav Kavala
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovakia
| | - Zuzana Barbieriková
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovakia
| | - Michal Zalibera
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovakia
| | - Marek Fronc
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovakia
| | - Ľubomír Švorc
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovakia
| | - Zuzana Vihonská
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovakia
| | - Petra Olejníková
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovakia
| | - Karol Lušpai
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovakia
| | - Vladimír Lukeš
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovakia
| | - Vlasta Brezová
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovakia
| | - Peter Szolcsányi
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovakia
| |
Collapse
|
7
|
Wang X, Emoto M, Miyake Y, Itto K, Xu S, Fujii H, Hirata H, Arimoto H. Novel blood–brain barrier-permeable spin probe for in vivo electron paramagnetic resonance imaging. Bioorg Med Chem Lett 2016; 26:4947-4949. [DOI: 10.1016/j.bmcl.2016.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/18/2016] [Accepted: 09/05/2016] [Indexed: 02/03/2023]
|
8
|
Matsuoka Y, Yamato M, Yamada KI. Fluorescence probe for the convenient and sensitive detection of ascorbic acid. J Clin Biochem Nutr 2015; 58:16-22. [PMID: 26798193 PMCID: PMC4706089 DOI: 10.3164/jcbn.15-105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/02/2015] [Indexed: 12/18/2022] Open
Abstract
Ascorbic acid is an important antioxidant that plays an essential role in the biosynthesis of numerous bioactive substances. The detection of ascorbic acid has traditionally been achieved using high-performance liquid chromatography and absorption spectrophotometry assays. However, the development of fluorescence probes for this purpose is highly desired because they provide a much more convenient and highly sensitive technique for the detection of this material. OFF-ON-type fluorescent probes have been developed for the detection of non-fluorescent compounds. Photo-induced electron transfer and fluorescence resonance energy transfer are the two main fluorescence quenching mechanisms for the detection of ascorbic acid, and several fluorescence probes have been reported based on redox-responsive metals and quantum dots. Profluorescent nitroxide compounds have also been developed as non-metal organic fluorescence probes for ascorbic acid. These nitroxide systems have a stable unpaired electron and can therefore react with ascorbic acid and a strong fluorescence quencher. Furthermore, recent synthetic advances have allowed for the synthesis of α-substituted nitroxides with varying levels of reactivity towards ascorbic acid. In this review, we have discussed the design strategies used for the preparation of fluorescent probes for ascorbic acid, with particular emphasis on profluorescent nitroxides, which are unique radical-based redox-active fluorescent probes.
Collapse
Affiliation(s)
- Yuta Matsuoka
- Department of Bio-functional Science, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mayumi Yamato
- Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ken-Ichi Yamada
- Department of Bio-functional Science, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
9
|
Abou Fadel M, Zhang X, de Juan A, Tauler R, Vezin H, Duponchel L. Extraction of Pure Spectral Signatures and Corresponding Chemical Maps from EPR Imaging Data Sets: Identifying Defects on a CaF2 Surface Due to a Laser Beam Exposure. Anal Chem 2015; 87:3929-35. [DOI: 10.1021/ac504733u] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Maya Abou Fadel
- LASIR
CNRS UMR 8516, Université Lille1, Sciences et Technologies, 59655 Villeneuve d’Ascq Cedex, France
| | - Xin Zhang
- IDAEA-CSIC, Jordi Girona 18, 08028 Barcelona, Spain
| | - Anna de Juan
- Chemometrics
Group, Department of Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Roma Tauler
- IDAEA-CSIC, Jordi Girona 18, 08028 Barcelona, Spain
| | - Hervé Vezin
- LASIR
CNRS UMR 8516, Université Lille1, Sciences et Technologies, 59655 Villeneuve d’Ascq Cedex, France
| | - Ludovic Duponchel
- LASIR
CNRS UMR 8516, Université Lille1, Sciences et Technologies, 59655 Villeneuve d’Ascq Cedex, France
| |
Collapse
|
10
|
Soikkeli M, Sievänen K, Peltonen J, Kaasalainen T, Timonen M, Heinonen P, Rönkkö S, Lehto VP, Kavakka JS, Heikkinen S. Synthesis and in vitro phantom NMR and MRI studies of fully organic free radicals, TEEPO-glucose and TEMPO-glucose, potential contrast agents for MRI. RSC Adv 2015. [DOI: 10.1039/c4ra11455h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two organic radical contrast agents, TEMPO-Glc and TEEPO-Glc, were synthesized and their stabilities and contrast enhancing properties were tested with in vitro NMR and MRI experiments.
Collapse
Affiliation(s)
- M. Soikkeli
- Laboratory of Organic Chemistry
- Department of Chemistry
- University of Helsinki
- Finland
| | - K. Sievänen
- Laboratory of Organic Chemistry
- Department of Chemistry
- University of Helsinki
- Finland
| | - J. Peltonen
- HUS Helsinki Medical Imaging Center
- Helsinki
- Finland
| | | | - M. Timonen
- HUS Helsinki Medical Imaging Center
- Helsinki
- Finland
| | - P. Heinonen
- Laboratory of Organic Chemistry
- Department of Chemistry
- University of Helsinki
- Finland
| | - S. Rönkkö
- Department of Applied Physics
- University of Eastern Finland
- FIN-70211 Kuopio
- Finland
| | - V.-P. Lehto
- Department of Applied Physics
- University of Eastern Finland
- FIN-70211 Kuopio
- Finland
| | - J. S. Kavakka
- Laboratory of Organic Chemistry
- Department of Chemistry
- University of Helsinki
- Finland
| | - S. Heikkinen
- Laboratory of Organic Chemistry
- Department of Chemistry
- University of Helsinki
- Finland
| |
Collapse
|