1
|
Nibin Joy M, Guda MR, Zyryanov GV. Evaluation of Anti-Inflammatory and Anti-Tubercular Activity of 4-Methyl-7-Substituted Coumarin Hybrids and Their Structure Activity Relationships. Pharmaceuticals (Basel) 2023; 16:1326. [PMID: 37765134 PMCID: PMC10535168 DOI: 10.3390/ph16091326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Four sets of previously synthesized 4-methyl-7-substituted coumarin derivatives were screened for their in vitro anti-inflammatory and anti-tubercular activities. The anti-inflammatory potential of 3a-t, 5a-o, 6a-n, and 7a-f synthesized compounds was evaluated by an anti-denaturation assay using diclofenac sodium as the reference standard. Evaluation of the anti-tuberculous activity of the mentioned compounds was performed by the Resazurin test method against four different TB strains using rifampicin and isoniazid as reference drugs. Based on the anti-inflammatory results, compounds 3o, 5f, 6c, and 7d proved to be the most active compounds in their respective series. Additionally, compounds 3k-n, 5b-d, 6d-f, 6k, 7a, and 7f were found to be the most potent anti-tuberculous agents. In fact, most of the screened compounds exhibited promising activity profiles compared to the respective standard drugs. The structure-activity connections revealed a few intriguing aspects, indicating that the presence of electron-donating and nitrogen-rich fragments boost the anti-inflammatory effects of the examined compounds. However, the presence of electron-withdrawing substituents was required to boost the anti-tubercular activity of the evaluated compounds.
Collapse
Affiliation(s)
- Muthipeedika Nibin Joy
- Institute of Chemical Engineering, Ural Federal University Named after the First President of Russia B. N. Yeltsin, 28 Mira St., Yekaterinburg 620002, Russia
| | - Mallikarjuna R. Guda
- Institute of Chemical Engineering, Ural Federal University Named after the First President of Russia B. N. Yeltsin, 28 Mira St., Yekaterinburg 620002, Russia
| | - Grigory V. Zyryanov
- Institute of Chemical Engineering, Ural Federal University Named after the First President of Russia B. N. Yeltsin, 28 Mira St., Yekaterinburg 620002, Russia
- Ural Division of the Russian Academy of Sciences, I. Ya. Postovskiy Institute of Organic Synthesis, 22 S. Kovalevskoy Street, Yekaterinburg 620219, Russia
| |
Collapse
|
2
|
|
3
|
Hickey SM, Nitschke SO, Sweetman MJ, Sumby CJ, Brooks DA, Plush SE, Ashton TD. Cross-Coupling of Amide and Amide Derivatives to Umbelliferone Nonaflates: Synthesis of Coumarin Derivatives and Fluorescent Materials. J Org Chem 2020; 85:7986-7999. [DOI: 10.1021/acs.joc.0c00813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Shane M. Hickey
- Clinical Health Sciences, Cancer Research Institute, University of South Australia, Adelaide, SA 5000, Australia
| | - Samuel O. Nitschke
- Clinical Health Sciences, Cancer Research Institute, University of South Australia, Adelaide, SA 5000, Australia
| | - Martin J. Sweetman
- Clinical Health Sciences, Cancer Research Institute, University of South Australia, Adelaide, SA 5000, Australia
| | - Christopher J. Sumby
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Douglas A. Brooks
- Clinical Health Sciences, Cancer Research Institute, University of South Australia, Adelaide, SA 5000, Australia
| | - Sally E. Plush
- Clinical Health Sciences, Cancer Research Institute, University of South Australia, Adelaide, SA 5000, Australia
| | - Trent D. Ashton
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
4
|
Microwave-Assisted Palladium-Catalyzed Cross-Coupling Reactions: Generation of Carbon–Carbon Bond. Catalysts 2019. [DOI: 10.3390/catal10010004] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cross-coupling reactions furnishing carbon–carbon (C–C) bond is one of the most challenging tasks in organic syntheses. The early developed reaction protocols by Negishi, Heck, Kumada, Sonogashira, Stille, Suzuki, and Hiyama, utilizing palladium or its salts as catalysis have, for decades, attracted and inspired researchers affiliated with academia and industry. Tremendous efforts have been paid to develop and achieve more sustainable reaction conditions, such as the reduction in energy consumption by applying the microwave irradiation technique. Chemical reactions under controlled microwave conditions dramatically reduce the reaction time and therefore resulting in increase in the yield of the desired product by minimizing the formation of side products. In this review, we mainly focus on the recent advances and applications of palladium catalyzed cross-coupling carbon–carbon bond formation under microwave technology.
Collapse
|
5
|
Design, Synthesis and Antibacterial Activity of Coumarin-1,2,3-triazole Hybrids Obtained from Natural Furocoumarin Peucedanin. Molecules 2019; 24:molecules24112126. [PMID: 31195697 PMCID: PMC6600338 DOI: 10.3390/molecules24112126] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022] Open
Abstract
Synthesis of 1,2,3-triazole-substituted coumarins and also 1,2,3-triazolyl or 1,2,3-triazolylalk-1-inyl-linked coumarin-2,3-furocoumarin hybrids was performed by employing the cross-coupling and copper catalyzed azide-alkyne cycloaddition reaction approaches. The synthesized compounds were evaluated for their in vitro antibacterial activity against Staphylococcus aureus, Bacillius subtilis, Actinomyces viscosus and Escherichia coli bacterial strains. Coumarin-benzoic acid hybrids 4с, 42с and 3-((4-acetylamino-3-(methoxycarbonyl)phenyl)ethynyl)coumarin (29) showed promising activity against S. aureus strains, and the 1,2,3-triazolyloct-1-inyl linked coumarin-2,3-furocoumarin hybrid 37c was endowed with high selectivity against B. subtilis and E. coli species. The in vitro antibacterial activity of 4с, 29, 37c and 42с can potentially be compared with that of a number of modern antibiotic drugs used in the clinic, suggesting promising prospects for further research. A detailed study of the molecular interactions with the targeted protein MurB was performed using docking simulations and the obtained results are quite promising.
Collapse
|
6
|
A highly efficient precatalytic system (XPhos-PdG2) for the Suzuki–Miyaura cross-coupling of 7-chloro-1H-pyrrolo[2,3-c]pyridine employing low catalyst loading. Mol Divers 2019; 23:697-707. [DOI: 10.1007/s11030-018-9904-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022]
|
7
|
Savitha B, Koti Reddy E, Parthasarathi D, Pakkath R, Sajith AM, Ananda kumar CS, Haridas KR, Syed Ali Padusha M. A Highly Efficient Catalyst for the Suzuki-Miyaura Cross-Coupling Reaction of 5-(5-chloropyridin-3-yl)-3-methyl-1,3,4-oxadiazol-2(3H
)-one. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Bhaskaran Savitha
- Postgraduate and Research Department of Chemistry, Jamal Mohamed College; Bharathidasan University; Tiruchirappalli Tamil Nadu 620020 India
| | - Eeda Koti Reddy
- Department of Chemistry; Vignan's Foundation for Science, Technology and Research - VFSTR (Deemed to be University); Vadlamudi Guntur Andhra Pradesh 522 213 India
| | - D. Parthasarathi
- Postgraduate and Research Department of Chemistry, Jamal Mohamed College; Bharathidasan University; Tiruchirappalli Tamil Nadu 620020 India
| | - Rajeesh Pakkath
- School of Chemical Sciences; Kannur University; Payyanur Campus, Edat P.O Kannur Kerala 670327 India
| | - Ayyiliath M. Sajith
- Postgraduate and Research Department of Chemistry, Kasaragod Government College; Kannur University; Kasaragod Kerala 671123 India
| | - C. S. Ananda kumar
- Department of Nanotechnology; Visvesvaraya Technological University; CPGS Muddenahalli 562 101 India
- Centre for Material Science; University of Mysore, Manasagangotri; Mysuru Karnataka 570 006 India
| | - Karickal R. Haridas
- School of Chemical Sciences; Kannur University; Payyanur Campus, Edat P.O Kannur Kerala 670327 India
| | - M. Syed Ali Padusha
- Postgraduate and Research Department of Chemistry, Jamal Mohamed College; Bharathidasan University; Tiruchirappalli Tamil Nadu 620020 India
| |
Collapse
|
8
|
Srivastava S, Bimal D, Bohra K, Singh B, Ponnan P, Jain R, Varma-Basil M, Maity J, Thirumal M, Prasad AK. Synthesis and antimycobacterial activity of 1-(β-d-Ribofuranosyl)-4-coumarinyloxymethyl- / -coumarinyl-1,2,3-triazole. Eur J Med Chem 2018. [PMID: 29529504 DOI: 10.1016/j.ejmech.2018.02.067] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A series of β-d-ribofuranosyl coumarinyl-1,2,3-triazoles have been synthesized by Cu-catalyzed cycloaddition reaction between azidosugar and 7-O-/7-alkynylated coumarins in 62-70% overall yields. The in vitro antimycobacterial activity evaluation of the synthesized triazolo-conjugates against Mycobacterium tuberculosis revealed that compounds were bactericidal in nature and some of them were found to be more active than one of the first line antimycobacterial drug ethambutol against sensitive reference strain H37Rv, and 7 to 420 times more active than all four first line antimycobacterial drugs (isoniazid, rifampicin, ethambutol and streptomycin) against multidrug resistant clinical isolate 591. Study of in silico pharmacokinetic profile indicated the drug like characters for the test molecules. Further, transmission electron microscopic experiments revealed that these compounds interfere with the constitution of bacterial cell wall possibly by targeting mycobacterial InhA and DNA gyrase enzymes. Study conducted on the activities of the test compounds on bacterial InhA and DNA gyrase revealed that the most bactericidal test compound, N1-(β-d-ribofuranosyl)-C4-(4-methylcoumarin-7-oxymethyl)-1,2,3-triazole (6b) and its corresponding directly linked conjugate N1-(β-d-ribofuranosyl)-C4-(4-methylcoumarin-7-yl)-1,2,3-triazole (11b) significantly inhibited the activity of both the enzymes. The results were further supported by molecular docking studies of the compound 6b and 11b with bacterial InhA and DNA gyrase B enzymes. Further, the cytotoxicity study of some of the better active compounds on THP-1 macrophage cell line using MTT assay showed that the synthesized compounds were non-cytotoxic.
Collapse
Affiliation(s)
| | - Devla Bimal
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Kapil Bohra
- Department of Chemistry, University of Delhi, Delhi-110007, India; Department of Chemistry, Deen Dayal Upadhyaya College, University of Delhi, Delhi-110078, India
| | - Balram Singh
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Prija Ponnan
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Ruchi Jain
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Mandira Varma-Basil
- Department of Microbiology, VP Chest Institute, University of Delhi, Delhi-110007, India
| | - Jyotirmoy Maity
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - M Thirumal
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Ashok K Prasad
- Department of Chemistry, University of Delhi, Delhi-110007, India.
| |
Collapse
|
9
|
Gangarapu NR, Reddy E, Sajith AM, Yellappa S, Chandrasekhar KB. NMI/MsCl-Mediated Amide Bond Formation of Aminopyrazines and Aryl/Heteroaryl Carboxylic Acids: Synthesis of Biologically Relevant Pyrazine Carboxamides. ChemistrySelect 2017. [DOI: 10.1002/slct.201700801] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Nagaraja Reddy Gangarapu
- Department of Pharmaceutical Chemistry; JNTUA-Oil Technological Research Institute, Ananthapuram, A.P
- Department of Chemistry; Government Science College; Bengaluru, Karnataka
| | - Eeda Koti Reddy
- Division of Chemistry; Department of Science and Humanities; Vignan‘s Foundation for Science; Technology and Research University-VFSTRU (Vignan University); Vadlamudi, Guntur 522 213, Andhra pradesh India
| | - Ayyiliath M Sajith
- Postgraduate and Research Department of Chemistry; Kasaragod Government College; Kannur University; Kasaragod, Kerala 671123 India
| | - Shivaraj Yellappa
- Department of Chemistry; Government Science College; Bengaluru, Karnataka
| | | |
Collapse
|
10
|
Ningegowda R, Bhaskaran S, Sajith AM, Aswathanarayanappa C, Padusha MSA, Shivananju NS, Priya BS. Mo(CO)6 as a Solid CO Source in the Synthesis of Aryl/Heteroaryl Weinreb Amides under Microwave-Enhanced Condition. Aust J Chem 2017. [DOI: 10.1071/ch16213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The facile transformation of aryl/heteroaryl nonaflates into corresponding amides via Pd-catalyzed aminocarbonylation using Mo(CO)6 as a solid CO source under microwave-enhanced condition is reported. The method was found to be tolerant with respect to a diverse range of electronically biased aryl/heteroaryl nonaflates, and exceptional yields were obtained. The optimized protocol was further extended to a diverse range of amines.
Collapse
|
11
|
Lei Y, Hu T, Wu X, Wu Y, Xiang H, Sun H, You Q, Zhang X. Microwave-assisted copper- and palladium-catalyzed sonogashira-type coupling of aryl bromides and iodides with trimethylsilylacetylene. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.01.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Joy MN, Bodke YD, Khader KA, Sajith AM, Venkatesh T, Kumar AA. Simultaneous exploration of TBAF·3H 2 O as a base as well as a solvating agent for the palladium catalyzed Suzuki cross-coupling of 4-methyl-7-nonafluorobutylsulfonyloxy coumarins under microwave irradiation. J Fluor Chem 2016. [DOI: 10.1016/j.jfluchem.2016.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Joy MN, Savitha B, Sajith AM, Bodke YD, Venkatesh T, Khader KA, Padusha MSA, Muralidharan A. A facile access for the synthesis of some C-2 substituted imidazopyrazines by utilizing the palladium catalyzed Suzuki cross-coupling reaction under microwave irradiation. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2015.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Shamim A, Vasconcelos SN, Ali B, Madureira LS, Zukerman-Schpector J, Stefani HA. Ligand and copper free Sonogashira coupling to achieve 2-alkynyl d-glucal derivatives: regioselective electrophile promoted nucleophilic 5-endo-dig cyclization. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.08.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|